首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2362篇
  免费   51篇
  国内免费   9篇
电工技术   88篇
综合类   2篇
化学工业   439篇
金属工艺   113篇
机械仪表   31篇
建筑科学   24篇
能源动力   71篇
轻工业   126篇
水利工程   2篇
石油天然气   1篇
无线电   217篇
一般工业技术   396篇
冶金工业   674篇
原子能技术   59篇
自动化技术   179篇
  2023年   4篇
  2022年   30篇
  2021年   28篇
  2020年   20篇
  2019年   23篇
  2018年   25篇
  2017年   31篇
  2016年   43篇
  2015年   24篇
  2014年   45篇
  2013年   75篇
  2012年   93篇
  2011年   108篇
  2010年   72篇
  2009年   78篇
  2008年   89篇
  2007年   84篇
  2006年   79篇
  2005年   74篇
  2004年   65篇
  2003年   69篇
  2002年   52篇
  2001年   48篇
  2000年   39篇
  1999年   55篇
  1998年   276篇
  1997年   144篇
  1996年   91篇
  1995年   57篇
  1994年   65篇
  1993年   70篇
  1992年   48篇
  1991年   25篇
  1990年   24篇
  1989年   27篇
  1988年   19篇
  1987年   21篇
  1986年   11篇
  1985年   25篇
  1984年   16篇
  1983年   13篇
  1982年   22篇
  1981年   19篇
  1980年   7篇
  1979年   9篇
  1978年   8篇
  1977年   13篇
  1976年   28篇
  1975年   5篇
  1974年   4篇
排序方式: 共有2422条查询结果,搜索用时 15 毫秒
91.
We propose structural models of the unique long period stacking/order (LPSO) phases formed in Mg-Zn-RE alloys, based on Z-contrast scanning transmission electron microscopy observations and first principles calculations. The LPSO structures are long period stacking derivatives of the hcp Mg structure, and the Zn/RE distributions are restricted at the four close-packed atomic layers forming local fcc stacking (i.e. a local ABCA stacking). Chemical order is well developed for the LPSO phases formed in Mg97Zn1Er2 (14H type) and Mg85Zn6Y9 (18R type) alloys with pronounced superlattice reflections, and the relevant Zn/RE distributions clearly emerge in the Z-contrast atomic images. Initial ternary ordered models were constructed by placing all the atoms at the ideal honeycomb sites, leading to plausible space groups of P63/mcm for the 14H type and C2/m, P3112 or P3212 for the 18R type. The characteristic ordered features are well represented by local Zn6RE8 clusters, which are embedded in the fcc stacking layers in accordance with the L12 type short-range order. Energy favored structural relaxations of the initial model cause significant displacement of the Zn/RE positions, implying that strong Zn-RE interactions may play a critical role in phase stability. The LPSO phases seem to tolerate a considerable degree of disorder at the Zn and RE sites with statistical co-occupations by Mg, extending the non-stoichiometric phase region bounded along the Zn/RE equiatomic line from ∼Mg94.0Zn2.0Y4.0 to ∼Mg83.3Zn8.3Y8.3.  相似文献   
92.
A resistance spot welding for three pieces of high strength steel sheets was selected as a research subject and the nugget formation processes at the various welding conditions were investigated by both experimental measurement and FEM simulation. The FEM program developed by the authors considered the coupling of the electrical field, thermal field and mechanical field. The interface elements were used to model the transient contact states between two worksheets or between a worksheet and an electrode. The electrical resistance and thermal–mechanical properties of the interface elements change with the contact state, and can have different values from the worksheets and electrodes. The nugget sizes and its formation process predicted by FEM agreed very well with experimental results. The welding conditions (current, cycles and force) to produce sound nuggets for both two pieces and three pieces of high strength steel sheets were accurately estimated by the simulation.  相似文献   
93.
To simulate the corrosion of galvanized steel in marine zone, β-FeOOH was prepared by aging the FeCl3 solutions containing ZnCl2 and zinc rusts such as ZnO and zinc hydroxychloride (Zn5(OH)8Cl2·H2O:ZHC). Adding ZnCl2, ZnO, and ZHC inhibited the crystallization and particle growth of β-FeOOH and the inhibitory effect was in order of ZHC ≈ ZnO > ZnCl2. The adsorption of H2O and CO2 was suppressed by adding ZnCl2, ZnO, and ZHC. These results imply that the rust formed on galvanized steel in marine environment is more compact, amorphous, and hydrophobic in nature which may lead to improve the corrosion resistance.  相似文献   
94.
The welding distortion of thin plate was selected as research subject, which causes loss of dimensional control, structural integrity and increases fabrication costs for straightening. To study the characteristic of the welding distortion on thin plate structures, experiments were conducted. The test model was a thin plate stiffened structure and a large twisting distortion was observed. The welding distortion of the same structure was analyzed as a large deformation problem using a thermal elastic plastic FEM and an elastic FEM based on the concept of inherent deformation. The computed results by both methods showed the twisting distortion which is a typical buckling type deformation and the magnitude of this distortion agreed well with the experimental measurement.  相似文献   
95.
Hydrogen embrittlement of zirconium alloys is one of the main causes of the mechanical degradation of the fuel cladding in light water reactors, and has therefore been extensively studied. Although various conjectures have been proposed as the origin of such embrittlement, it is not known which one plays the most important role: the brittle nature of the hydride, micro-crack nucleation by interaction of hydride precipitates with dislocations or void nucleation at the interface between hydride precipitates and zirconium matrix. The purpose of the present study was to elucidate the origin of the embrittlement by investigating the fracture properties of the hydride. We have evaluated the surface energy γS and unstable stacking energy γUS of Zr–H systems by using ab initio calculations. The ductile/brittle behavior of the hydride is discussed based on the difference between γS and γUS among the hydride, pure zirconium and hydrogen solid solution. For the solid solution at a H/Zr ratio less than 0.5 we obtained a monotonous decrease by 15–34% and 50–100% in γS and γUS, respectively, from those in pure zirconium, indicating a reduction in both brittleness and ductility. Thus, hydrogen-induced embrittlement of the hcp Zr matrix was not confirmed. On the other hand, for the hydride we obtained a 25% smaller γS and a 200–300% larger γUS than those in pure zirconium. This indicates that zirconium hydride has an extremely brittle nature due to the synergistic effect of a small γS, implying easy generation of a fracture surface, and large γUS, implying a difficulty in dislocation motion, compared with pure zirconium. Furthermore, Rice’s ductile/brittle parameter D was 1.4 in the δ-hydride, indicating that it undergoes brittle fracture more easily than iridium, known as an extremely brittle material. These results seem sufficient to attribute hydrogen embrittlement of zirconium alloys substantially to the brittle nature of the hydride.  相似文献   
96.
After the recent discovery of bacterial riboswitches, synthetic riboswitches have been engineered by using natural and artificial RNA aptamers. In contrast to natural riboswitches, the majority of synthetic riboswitches in bacteria reported to date are ON switches that activate gene expression in response to the aptamer ligand. In this study, we adopted a mechanism‐guided approach to design libraries predisposed to contain OFF riboswitches that respond to thiamine pyrophosphate (TPP). The first library design exploited a pseudo‐Shine‐Dalgarno (SD) sequence located near the 3′‐end of the TPP aptamer, which would be less accessible to the ribosome when the aptamer is bound to TPP. In the second library, an SD sequence was strategically placed in the aptamer's P1 stem, which is stabilized upon ligand binding. OFF riboswitches were obtained by dual genetic selection of these libraries. The results underscore the importance of effective library design to achieve desired riboswitch functions.  相似文献   
97.
Roots of the carrot cultivars Vertou L.D. (resistant) and Long Chantenay (susceptible) were subjected to detailed chemical analysis to identify extracts and compounds influencing larval host-finding (preference/non-preference) behavior and to compare concentrations of these compounds in resistant and susceptible cultivars. Vertou yielded threefold less volatile material in headspace extracts of pureed roots. Extracts of chopped root in methanol, steam, hexane, and chloroform were inactive in behavioral assays. However, ether extracts were active and their hydrocarbon and carbonyl-rich fractions contained potent attractants. The principal constituent of the carbonyl-rich fraction of each cultivar was the carotatoxin complex comprising the neurotoxin falcarinol (carotatoxin), falcarindiol, and falcarindiol monoacetate, the latter compound here reported for the first time from carrot. Falcarinol (50 and 100 g) was active in a behavioral assay, and all three ingredients of the complex were potent electrophysiological stimuli, eliciting maximum single unit responses to source concentrations of 10 ng. Furthermore, the complex was more abundant by about 1000 g/root in Long Chantenay. As this comprised extra amounts of 70, 862, and 110 g of falcarinol, falcarindiol, and falcarindiol monoacetate, respectively, the observed differences seem both behaviorally and physiologically relevant. It is generally accepted that coevolution has transformed the role of many toxins into host-location cues, but this seems a relatively rare example of a neurotoxin (falcarinol) evincing, in decreased concentrations, nonpreference host resistance. This evolved response to a toxin present in large concentrations is contrasted with that totrans-2-nonenal, which paralyses and kills the larva and is present in only trace amounts in the root.  相似文献   
98.
Hexagonal-structured self-assemblies of nanocrystalline (anatase) titania templated by cetyltrimethylammonium bromide (C(16)H(33)N(CH(3))(3)Br; CTAB) (Hex-ncTiO(2)/CTAB Nanoskeleton) were formed after mixing of aqueous solutions containing CTAB spherical micelles and titanium oxysulfate acid hydrate (TiOSO(4).xH(2)SO(4).xH(2)O) as a titania precursor in the absence of any other additives. Formation mechanism of the Hex-ncTiO(2)/CTAB Nanoskeleton was examined in terms of the reaction temperature, titania precursor/CTAB mixing ratio, surfactant type, electrostatic interaction, micelle formation and molecular component. We found that crystal growth of crystalline (anatase) titania (polymorphic crystallization) was promoted with higher temperature and lower titania precursor content in aqueous solutions. In addition, we revealed that the crystalline (anatase) titania was formed in polycation, poly(allylamine hydrochloride ([CH(2)CH(CH(2)NH(2))HCl](n); PAH), and formamide (HCONH(2)) solutions. On the other hand, no titania formation was observed in anionic systems such as sodium dodecyl sulfate (CH(3)(CH(2))(11)OSO(3)Na; SDS) and poly(sodium 4-styrenesulfonate ([C(8)H(7)SO(3)Na](n); PSSS). This indicates that hydrolysis reaction of the titania precursor is initiated by not only cations but also nitrogen atoms in molecules and polymers. Hexagonally structure was formed in only cationic surfactant micellar solutions but not in polycation solutions and formamide.  相似文献   
99.
Adsorption of a cationic gemini surfactant (1,2-bis(dodecyldimethylammonio) ethane dibromide, 12-2-12) and the corresponding monomeric surfactant (dodecyltrimethylammonium bromide, DTAB) on montmorillonite has been characterized with a combination of adsorption isotherm, interlayer spacing and FT-IR spectroscopic data. Adsolubilization of vitamin E into the adsorbed surfactant layers has also been studied. The adsorption isotherm data reveal that the adsorption of the two surfactants is driven by the two factors: one is the cation exchange that occurs on the interlayer basal planes and the other is the hydrophobic interaction between hydrocarbon chains of the surfactants. Although the adsorbed amount measured in the saturation region (in mol g(-1)) is almost identical for the two surfactants, the conformation of the intercalated surfactant molecules differs significantly from each other. The adsorption of DTAB results in a lateral bilayer arrangement in the limited interlayer space, whereas 12-2-12 gives a normal bilayer arrangement in the expanded interlayer space. Adsolubilization of vitamin E takes place into the adsorbed surfactant layers, and interestingly, all the vitamin E molecules added in the montmorillonite suspensions are hybridized at lower surfactant concentrations due to the great specific surface area of the clay material. Since the maximum adsolubilization amount is usually obtained just below the critical micelle concentration, the gemini surfactant is deemed to be more efficient than the corresponding monomeric one to achieve the great adsolubilization amount.  相似文献   
100.
Mannosylerythritol lipid-A (MEL-A) is one of the most promising glycolipid biosurfactants, and abundantly produced by Pseudozyma yeasts. MEL-A gives not only excellent self-assembling properties but also a high binding affinity toward human immunoglobulin G (HIgG). In this study, three kinds of MEL-A were prepared from methyl myristate [MEL-A (m)], olive oil [MEL-A (o)], and soybean oil [MEL-A (s)], and the effect of interfacial properties of each MEL-A monolayer on the binding affinity toward HIgG was investigated using surface plasmon resonance (SPR) and the measurement of surface pressure (pi)-area (A) isotherms. Based on GC-MS analysis, the main fatty acids were C(8) and C(10) acids in all MEL-A, and the content of unsaturated fatty acids was 0% for MEL-A (m), 9.1% for MEL-A (o), 46.3% for MEL-A (s), respectively. Interestingly, the acid content significantly influenced on their binding affinity, and the monolayer of MEL-A (o) gave a higher binding affinity than that of MEL-A (m) and MEL-A (s). Moreover, the mixed MEL-A (o)/ MEL-A (s) monolayer prepared from 1/1 molar ratio, which comprised of 27.8% of unsaturated fatty acids, indicated the highest binding affinity. At the air/water interface, MEL-A (o) monolayer exhibited a phase transition at 13 degrees C from a liquid condensed monolayer to a liquid expanded monolayer, and the area per molecule significantly expanded above 13 degrees C, while the amount of HIgG bound to the liquid expanded monolayer was much higher than that bound to liquid condensed monolayer. The binding affinity of MEL-A toward HIgG is thus likely to closely relate to the monolayer packing density, and may be partly controlled by temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号