首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   18篇
电工技术   10篇
综合类   1篇
化学工业   185篇
机械仪表   8篇
建筑科学   2篇
能源动力   10篇
轻工业   14篇
无线电   11篇
一般工业技术   39篇
冶金工业   31篇
原子能技术   4篇
自动化技术   21篇
  2023年   3篇
  2022年   2篇
  2021年   10篇
  2020年   1篇
  2019年   5篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   15篇
  2013年   13篇
  2012年   13篇
  2011年   13篇
  2010年   16篇
  2009年   21篇
  2008年   16篇
  2007年   17篇
  2006年   19篇
  2005年   10篇
  2004年   10篇
  2003年   21篇
  2002年   12篇
  2001年   9篇
  2000年   9篇
  1999年   5篇
  1998年   18篇
  1997年   10篇
  1996年   8篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
291.
292.
Effect of the number of detectors on an inversion problem of a scattering pattern by laser scattering method based on Mie scattering model has been investigated. The influence of the number of detectors is obtained by comparing a given size distribution and a calculated size distribution by computer simulation and experimental method. An observing range of scattering angles is from 0.0007 to 2.5 rad. A non-linear iteration method is used for calculating particle size distribution. The number of detectors is changed from 6 to 81 elements by the computer simulation. The algorithm of the inversion problem is applied with mean diameters of log-normal distribution in a range from 0.546 to 214 μm at standard deviation of 0.27 and 0.68. Experimental results of certified mono-disperse polystyrene latex standards and a poly-disperse aluminum sample are obtained with 21, 41, and 81 elements detector, respectively. All tests are performed under conditions at diluted aqueous suspensions. Narrow size distribution is influenced by the number of detectors compared with wide size distribution. Not the number of physical detectors but the number of useful detectors affects the algorithm of the inversion problem. When the detector elements are over 20, the influence of the number of detectors is decreased.  相似文献   
293.
Effect and mechanism of additives for ionic liquids as new lubricants   总被引:4,自引:0,他引:4  
Ionic liquids are unique compounds, which exhibit low viscosity, non-flammability, low vapor pressure, and extremely high thermal stability. Therefore, they are expected as candidates for advanced lubricants. Several ionic liquids, derived from cations such as imidazolium, pridinium, ammonium, and anions such as , bis(trifluoromethylsulfonyl)imide (TFSI-) were examined under boundary conditions. It was found that tribological properties of ionic liquids are better than those of conventional lubricants such as synthetic hydrocarbons, synthetic esters, and fluorinated ethers. Careful analysis of worn surface revealed that tribochemical reactions of ionic liquids take place under these conditions. For example, organic fluoride, iron fluoride, iron sulfate derived from anionic moiety of the ionic liquids were detected by the instrumental surface-analysis with TOF-SIMS and XPS. Tricresylphosphate (TCP) and dibenzyldisulfide (DBDS) were found to improve anti-wear properties of ionic liquids to some extent. Interestingly, both additive-derived compounds and anionic moiety derived ones were detected on the worn surface. Moreover, additive response of ionic liquids was found to be superior to those for conventional lubricants. It was speculated that the unique tribochemical reactions will lead us to design tailor-made lubricants. Lubrication mechanism of ionic liquids is discussed from the viewpoint of tribochemistry.  相似文献   
294.
Poly(vinyl butyral) (PVB)‐TiO2 composite hollow fiber membranes were prepared via nonsolvent induced phase separation (NIPS). The membrane had a skin layer on both the outer and inner surface at the initial stage after membrane preparation. However, the outer surface became porous with the passage of time, as the polymer in the membrane's outer surface was decomposed by the photocatalysis of TiO2. The initial water permeability increased with the increase of TiO2 content. Furthermore, for all the membranes, as time elapsed the water permeabilities increased and became constant after about 15 days, which was in accordance with the alteration on the membrane's outer surface. Despite decomposition of the polymer on the outer surface, particle rejection hardly changed because the inner surface kept the original structure. Thus, addition of TiO2 to the membrane is a useful way to improve water permeability while maintaining particle rejection. The clear asymmetric structure with both porous structure at the outer surface and skin layer at the inner surface was achieved by the addition of TiO2. Therefore, the addition of TiO2 is a new method for achieving the high porosity at the outer surface of the hollow fiber membrane. In addition, tensile strength and elasticity kept constant over time and were higher than those of original PVB membranes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
295.
Random and multiblock copolymers of sulfonated poly(arylene ether sulfone) (SPAES) were synthesized and characterized to compare the differences in the properties of proton‐exchange membranes made with random and multiblock SPAES copolymers. Atomic force microscopy observations and small‐angle X‐ray scattering measurements suggested the presence of nanoscale, clusterlike structures in the multiblock SPAES copolymers but not in the random SPAES copolymers. Proton‐exchange membranes were prepared from random and multiblock copolymers with various ion‐exchange capacities (IECs). The water uptake, proton conductivity, and methanol permeability of the SPAES membranes depended on the IECs of the random and multiblock SPAES copolymers. At the same IEC, the multiblock SPAES copolymers exhibited higher performances with respect to proton conductivity and proton/methanol permeation selectivity than the random SPAES copolymers. The higher performances of the multiblock SPAES copolymers were thought to be due to their clusterlike structure, which was similar to the ionic cluster of a Nafion membrane. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
296.
297.
Amphiphilic anthraquinone bearing polyoxyethylene moiety (PEGMW‐AQ) was prepared and impregnated in polyethylene terephthalate (PET) and nylon 6 (ON) films. The uptake of PEGMW‐AQ to PET film increased in proportion to the concentration of PEGMW‐AQ in a bath, and the contact angle of water dropped on the film decreased with increase in the uptake. At a constant uptake of PEGMW‐AQ, the contact angle decreased with an increase of molecular weight of PEGMW attached to the anthraquinone, which indicates that polyoxyethylene moiety of PEGMW‐AQ is effective on the wettability of the film. The decrement of water contact angle on PET film dyed with PEGMW‐AQ was larger than that on ON film at the same dye uptake because of the higher dyeability of PET film than ON film with PEGMW‐AQ. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 545–549, 2005  相似文献   
298.
Poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) with very different weight‐average molecular weights (Mw) of 4.0 × 103 and 7.0 × 105 g mol?1 (Mw(PDLA)/Mw(PLLA) = 175) were blended at different PDLA weight ratios (XD = PDLA weight/blend weight) and their crystallization from the melt was investigated. The presence of low molecular weight PLLA facilitated the stereocomplexation and thereby lowered the cold crystallization temperature (Tcc) for non‐isothermal crystallization during heating and elevated the radial growth rate of spherulites (G) for isothermal crystallization, irrespective of XD. The orientation of lamellae in the spherulites was higher for the neat PLLA, PDLA and an equimolar blend than for the non‐equimolar blends. It was found that the orientation of lamellae in the blends was maintained by the stereocomplex (SC) crystallites. Although the G values are expected to decrease with an increase in XD or the content of high‐molecular‐weight PDLA with lower chain mobility compared with that of low‐molecular‐weight PLLA, G was highest at XD = 0.5 where the maximum amount of SC crystallites was formed and the G values were very similar for XD = 0.4 and XD = 0.6 with the same enantiomeric excess. This means that the effect of SC crystallites overwhelmed that of chain mobility. The nucleating mechanisms of SC crystallites were identical for XD = 0.1–0.5 in the Tc range 130–180 °C. Copyright © 2011 Society of Chemical Industry  相似文献   
299.
Inrecent years, the use of spray drying for the production of anhydrobiotics has gained the interest of functional food manufacturers, mainly due to cost efficiencies and enhanced product and process flexibility (e.g., enhanced shelf life). In the present work, spray-drying conditions (air inlet temperature and feed flow rate) were optimized for the microencapsulation of the thermo sensitive probiotic lactobacilli strains Lactobacillus acidophilus stabilized in a 60:20:20 (w/w) maltodextrin: whey protein concentrate: D-glucose carrier. A 23 full-factorial experimental design was constructed with air inlet temperature (120, 140, and 160°C) and feed flow rate (6, 7.5, and 9.0 mL/min) as the independent variables and total viable counts (TVC), water activity (a w ), and cyclone recovery (CR) defined as the dependent variables. The increase in air inlet temperature from 120 to 160°C induced a significant (p < 0.001) reduction in the TVC from 9.02 to 7.20 log cfu/g, which corresponds to a97.5% loss of the L. acidophilus viable counts. On the other hand, the increase in the feed flow rate from 6 to 7.5 mL/min significantly reduced (p < 0.001) the heat-induced viability loss. A further increase in the feeding rate did not further modify the achieved thermo protection, and a detrimental impact of cyclone recovery (reduction) and water activity (increase) of the powder was observed. Using pruned quadratic mathematical models, the optimum spray-drying conditions for the production of maximally viable microencapsulated L. acidophilus were 133.34°C and 7.14 mL/min. The physicochemical and structural characteristics of the powders produced were acceptable for application with regards to residual water content, particles mean size, and thermo physical properties to ensure appropriate storage stability under room temperature conditions, with a low inactivation rate of L. acidophilus. Microcapsules appeared partially collapsed by scanning electron microscope with a spherical shape with surface concavities.  相似文献   
300.
Poly(L ‐lactide‐co‐ε‐caprolactone) [P(LLA‐CL)], which is used in biodegradable biomedical materials such as drug‐delivery systems, surgical sutures, orthopedics, and scaffolds for tissue engineering, has been reported to crystallize upon storage in a dry state even at room temperature; this results in rapid changes in the mechanical properties. In biomedical applications, P(LLA‐CL) is used in the presence of water. This study investigated the effects of water on the crystallization of P(LLA‐CL) at 37°C in phosphate buffered solution, which was anticipated to alter its mechanical properties and hydrolytic degradation behavior. Surprisingly, the crystallinity of P(LLA‐CL) in the presence of water rapidly increased in 6–12 h and then slowly increased up to 120 h. The period of time for the initial rapid crystallization increase in the presence of water was much shorter than that in the absence of water. The obtained information would be useful for the selection, preparation, and use of P(LLA‐CL) in various biomedical applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号