首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1446篇
  免费   25篇
  国内免费   5篇
电工技术   59篇
综合类   4篇
化学工业   300篇
金属工艺   27篇
机械仪表   36篇
建筑科学   29篇
能源动力   47篇
轻工业   130篇
水利工程   6篇
无线电   113篇
一般工业技术   208篇
冶金工业   374篇
原子能技术   72篇
自动化技术   71篇
  2023年   13篇
  2022年   10篇
  2021年   17篇
  2020年   8篇
  2019年   14篇
  2018年   20篇
  2017年   16篇
  2016年   32篇
  2015年   14篇
  2014年   30篇
  2013年   69篇
  2012年   50篇
  2011年   60篇
  2010年   42篇
  2009年   52篇
  2008年   61篇
  2007年   46篇
  2006年   45篇
  2005年   47篇
  2004年   49篇
  2003年   51篇
  2002年   44篇
  2001年   30篇
  2000年   31篇
  1999年   34篇
  1998年   133篇
  1997年   77篇
  1996年   54篇
  1995年   35篇
  1994年   35篇
  1993年   35篇
  1992年   17篇
  1991年   16篇
  1990年   8篇
  1989年   12篇
  1988年   14篇
  1987年   15篇
  1986年   13篇
  1985年   10篇
  1984年   8篇
  1983年   9篇
  1982年   6篇
  1981年   11篇
  1980年   6篇
  1979年   14篇
  1978年   8篇
  1977年   12篇
  1976年   16篇
  1974年   5篇
  1972年   6篇
排序方式: 共有1476条查询结果,搜索用时 15 毫秒
51.
Mannosylerythritol lipids (MELs), which are one of the representative sugar-based biosurfactants (BSs) produced by microorganisms, have attracted much attention in various fields in the sustainable development goals (SDGs) era. However, they are inseparable mixtures with respect to the chain length of the fatty acids. In this study, self-assembling properties and structure-activity relationship (SAR) studies of recovery effects on damaged skin cells using chemically synthesized MELs were investigated. It was revealed, for the first time, that synthetic and homogeneous MELs exhibited significant self-assembling properties to form droplets or giant vesicles. In addition, a small difference in the length of the fatty acid chains of the MELs significantly affected their recovery effects on the damaged skin cells. MELs with medium or longer length alkyl chains exhibited much higher recovery effects than that of C18-ceramide NP.  相似文献   
52.
The progression of chronic liver disease differs by etiology. The aim of this study was to elucidate the difference in disease progression between chronic hepatitis C (CHC) and nonalcoholic fatty liver disease (NAFLD) by means of fibrosis markers, liver function, and hepatic tissue blood flow (TBF). Xenon computed tomography (Xe-CT) was performed in 139 patients with NAFLD and 152 patients with CHC (including liver cirrhosis (LC)). The cutoff values for fibrosis markers were compared between NAFLD and CHC, and correlations between hepatic TBF and liver function tests were examined at each fibrosis stage. The cutoff values for detection of the advanced fibrosis stage were lower in NAFLD than in CHC. Although portal venous TBF (PVTBF) correlated with liver function tests, PVTBF in initial LC caused by nonalcoholic steatohepatitis (NASH-LC) was significantly lower than that in hepatitis C virus (C-LC) (p = 0.014). Conversely, the liver function tests in NASH-LC were higher than those in C-LC (p < 0.05). It is important to recognize the difference between NAFLD and CHC. We concluded that changes in hepatic blood flow occurred during the earliest stage of hepatic fibrosis in patients with NAFLD; therefore, patients with NAFLD need to be followed carefully.  相似文献   
53.
To understand the adsorption properties of a styrene–divinylbenzene copolymer functionalized with N,N,N-trimethylglycine, AMP03, the adsorption behaviours for platinoid ions (Ru(III), Rh(III) and Pd(II)) were examined. Furthermore, we performed adsorption experiments using sample solutions by adding triethylamine, thiourea and N,N,N-trimethylglycine. Based on the adsorption data obtained in this study, we performed chromatographic experiments. The results indicated that all platinoid ions in the feed solution completely adsorbed on AMP03, and almost 80% of the adsorbed platinoid ions were recovered. These results show that AMP03 has the potential to recover Ru(III), Rh(III) and Pd(II) from high-level liquid waste.  相似文献   
54.
A yttria-stabilized zirconia (YSZ) thin film on an La0.8Sr0.2MnO3 porous cathode substrate was prepared, using electrophoretic deposition (EPD) to fabricate a solid oxide fuel cell (SOFC). The electrical conductivity of an La0.8Sr0.2MnO3 substrate is satisfactorily high at room temperature; therefore, YSZ powder could be deposited electrophoretically onto an La0.8Sr0.2MnO3 substrate without any extra surface treatment, such as a metal coating. Successive repetition of EPD and sintering was required to obtain a film without gas leakage, because of the thermal expansion coefficient mismatch between the YSZ and the La0.8Sr0.2MnO3 substrate. On the other hand, the electromotive force of the oxygen concentration in the cell that used YSZ film prepared via EPD increased and attained the theoretical value when the number of deposition and calcination cycles was increased. Six or more successive repetitions were required to obtain a YSZ film without gas leakage. A planar-type SOFC was fabricated, using nickel as the anode and YSZ film (∼10 μm thick) that had been deposited onto the La0.8Sr0.2MnO3 substrate as the electrolyte and cathode. The cell exhibited an open circuit voltage of 1.0 V and a maximum power density of 1.5 W/cm2. Thus, the EPD method could be used as a colloidal process to prepare YSZ thin-film electrolytes for SOFCs.  相似文献   
55.
Morita M  Tokita M 《Lipids》2008,43(7):589-597
The formation of hydroxy radicals, hexanal, and 2,4-decadienal was demonstrated from the autocatalytic dimer peroxide which had been reported by us in autoxidizing linoleate (Morita and Tokita in Lipids 41:91-95, 2006). Then, autoxidizing linoleate containing eleostearate was investigated for new autocatalytic substances. The substances obtained were identified as peroxide-linked polymers consisting of both linoleate- and eleostearate-origin units with one hydroperoxy group, and also revealed activity of hydroxy-radical generation. The background of this study is as follows: the above paper reported this autocatalytic dimer peroxide as one of the real radical generators in linoleate autoxidation; this is a peroxide-linked dimer consisting of two linoleate moieties with two hydroperoxy groups, and was much more important than the main-product hydroperoxide in autocatalytic radical supply; its proposed decomposition mechanism has suggested the generation of hydroxy radicals, hexanal, and 2,4-decadienal; on the other hand, analogy to the formation mechanism of this dimer peroxide has predicted the formation of similar polymeric products from conjugated polyene components in lipids. In this study, these two predictions were successfully verified and a discussion is presented in connection with them.  相似文献   
56.
Mannosylerythritol lipids (MELs) are one of the most promising glycolipid biosurfactants known because of their multifunctionality and biocompatibility. The search for novel producers of MELs was undertaken based on the analysis of ribosomal DNA sequences on basidiomycetous yeasts. The bermuda grass smut fungus Ustilago cynodontis NBRC 7530, which taxonomically relates to Pseudozyma shanxiensis known as a MEL-C producer, was found to accumulate glycolipids in the cultured medium. Under a shake flask culture with soybean oil, the amount of the glycolipids was 1.4 g/L for 7 days at 25 degrees C. As a result of the structural characterization, the main glycolipids was identified as 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol, and the major fatty acids were C(14) and C(16) ones. The glycolipid was highly hydrophilic MEL-C, and very similar to those produced by P. shanxiensis. The fungi of the genus Ustilago are thus likely to be potential producers of MELs as well as the yeasts of the genus Pseudozyma.  相似文献   
57.
Mannosylerythritol lipid-A (MEL-A) is one of the most promising glycolipid biosurfactants, and abundantly produced by Pseudozyma yeasts. MEL-A gives not only excellent self-assembling properties but also a high binding affinity toward human immunoglobulin G (HIgG). In this study, three kinds of MEL-A were prepared from methyl myristate [MEL-A (m)], olive oil [MEL-A (o)], and soybean oil [MEL-A (s)], and the effect of interfacial properties of each MEL-A monolayer on the binding affinity toward HIgG was investigated using surface plasmon resonance (SPR) and the measurement of surface pressure (pi)-area (A) isotherms. Based on GC-MS analysis, the main fatty acids were C(8) and C(10) acids in all MEL-A, and the content of unsaturated fatty acids was 0% for MEL-A (m), 9.1% for MEL-A (o), 46.3% for MEL-A (s), respectively. Interestingly, the acid content significantly influenced on their binding affinity, and the monolayer of MEL-A (o) gave a higher binding affinity than that of MEL-A (m) and MEL-A (s). Moreover, the mixed MEL-A (o)/ MEL-A (s) monolayer prepared from 1/1 molar ratio, which comprised of 27.8% of unsaturated fatty acids, indicated the highest binding affinity. At the air/water interface, MEL-A (o) monolayer exhibited a phase transition at 13 degrees C from a liquid condensed monolayer to a liquid expanded monolayer, and the area per molecule significantly expanded above 13 degrees C, while the amount of HIgG bound to the liquid expanded monolayer was much higher than that bound to liquid condensed monolayer. The binding affinity of MEL-A toward HIgG is thus likely to closely relate to the monolayer packing density, and may be partly controlled by temperature.  相似文献   
58.
A basidiomycetous yeast, Pseudozyma graminicola CBS 10092, was found to accumulate a large amount of glycolipids in the cultured medium when grown on soybean oil as the sole carbon source. Based on thin layer chromatography, the extracellular glycolipids gave spots corresponding to those of mannosylerythritol lipids (MELs), which are highly functional and promising biosurfactants. From the structural characterization by 1H and 13C NMR, the main product was identified as 4-O-[(4'-mono-O-acetyl-2', 3'-di-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol, which is a highly hydrophilic derivative of MELs known as MEL-C. According to high-performance liquid chromatography analysis, the main product, MEL-C, comprised approximately 85% of all the MELs, and the total amount reached approximately 10 g/L for 7 days. The fatty acids of the present MEL-C consisted of mainly C6, C8 and C14 acids, considerably different from those of MEL-C produced by other Pseudozyma strains such as P. antarctica and P. shanxiensis. The observed critical micelle concentration (CMC) and the surface-tension at CMC of the MEL-C were 4.0 x 10(-6) M and 24.2 mN/m, respectively, while those of MEL-A, the most intensively studied MEL, were 2.7 x 10(-6) M and 28.4 mN/m, respectively. This implied that the MEL-C has higher hydrophilicity than conventional MELs hitherto reported. In addition, on a water-penetration scan, the MEL-C efficiently formed the lamella phase (Lalpha) at a wide range of concentrations, indicating its excellent self-assembling properties. From these results, the newly identified MELs produced by P. graminicola are likely to have great potential for use in oil-in-water type emulsifiers and/or washing detergents, and would thus facilitate a broad range of applications for the promising yeast biosurfactants.  相似文献   
59.
The distribution of nano-sized silica in binary rubber blends is characterized by scanning transmission electron microscopy (STEM) tomography combined with energy dispersive X-ray spectrometry (EDX). 3D distribution of silica is visualized by STEM-EDX tomography with the tilt-series of silicon elemental maps, while the phase-separated morphologies of polyisoprene rubber (IR) and styrene-butadiene rubber (SBR) are visualized by STEM-tomography in high-angle-annular-dark field (HAADF) mode. The combination of STEM-EDX and STEM-HAADF tomography enables us to determine the distribution of silica between the two rubber phases quantitatively even with high contents of silica up to 70 phr (weight parts per hundred rubber). It is found that silica is preferentially distributed in the SBR phase, but it is also distributed in the IR phase when the IR fraction in the total rubber components is higher than 40 wt%. The preferential distribution of silica in the SBR phase improves the dispersion of the IR domains. This is the first use of this technique for a multicomponent polymer system, showing the advantage to characterize the complicated multicomponent polymer composite morphologies.  相似文献   
60.
Photoinduced graft copolymerization of vinyl monomers onto deoxy(thiosulfato)chitin (S2O3–chitin) has been studied. Chitin was first tosylated and subsequently transformed into S2O3–chitin. S2O3–chitin has good solubility over tosyl–chitin. Graft copolymerization of S2O3–chitin proceeded very easily by ultraviolet irradiation without catalyst. Photolysis of S2O3 groups was confirmed by infrared spectra. But the photolysis occurred only in quartz, not in a Pyrex tube. Methyl methacrylate (MMA) and acrylonitrile showed good grafting activities. In the case of acrylic acid and acryl amide, homopolymer formation was predominant, and the degree of grafting was low. We chose the MMA monomer for further information. The grafting rate of S2O3–chitin using MMA was much faster than those of chitin and O‐acetyl–chitin. Under the appropriate conditions, the degree of grafting reached 600% only in 2 h, and the grafting efficiency was over 75% in any monomer concentration. But addition of DMSO into the polymerization system decreased the degree of grafting. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 189–195, 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号