首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   2篇
电工技术   2篇
化学工业   24篇
金属工艺   3篇
轻工业   4篇
无线电   3篇
一般工业技术   8篇
冶金工业   1篇
原子能技术   1篇
自动化技术   4篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2014年   5篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有50条查询结果,搜索用时 85 毫秒
31.
The preparation of electrospun non‐woven fabrics composed of cellulose and synthetic phosphorylated polypeptides, copoly[Ser(PO3H2)XAspY]s (X:Y = 100:0, 75:25, 50:50, 25:75), is described. The non‐wovens were subjected to an alternate immersion in CaCl2 and Na2HPO4 solutions to induce crystallization of calcium phosphate. The deposited calcium phosphate crystals were analyzed by means of EDX analysis and WXRD. The amounts of calcium phosphate deposition are greater for the cellulose non‐woven fabrics containing copoly[Ser(PO3H2)XAspY] than those of cellulose‐only non‐woven fabrics. These results indicate that copoly[Ser(PO3H2)XAspY] can entrap Ca2+ ions around the fine fiber matrix to accelerate crystallization of the calcium phosphate.

  相似文献   

32.
In order to obtain highly conductive polymer electrolytes for an electric double layer capacitor, three kinds of polymer gel electrolytes were prepared. Vinyl acetate (VAc) and methyl methacrylate (MMA) were copolymerized with divinyl adipate (DA) and ethylene glycol dimethacrylate (EGDMA), respectively, in propylene carbonate (PC) containing tetraethylammonium tetrafluoroborate (TEATFB) to form network polymer gel electrolytes. MMA was also copolymerized with butylene glycol DMA for comparison. The polymer gel electrolytes obtained were characterized by means of thermogravimetry, complex impedance analysis, and cyclic voltammetry for use in the electric double layer capacitor. The ionic conductivities of the polymer gel electrolytes were dependent on the TEATFB concentration, temperature, and crosslinking degree. The polymer gel electrolytes in the VAc‐DA system exhibited higher room temperature conductivities (10−2 S/cm) than those in the MMA‐EGDMA system. Further, the polymer gel electrolytes in the VAc‐DA system showed good electrochemical stability windows ranging from −4.0 to 4.0 V versus Ag. Thermal analysis revealed that the polymer gel electrolytes in both systems were stable up to 150°C. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 12–18, 2000  相似文献   
33.
To evaluate LC methods with UV or MS detection for simultaneous analysis of deoxynivalenol (DON) and nivalenol (NIV) in wheat, an interlaboratory study was conducted in 11 laboratories. DON and NIV were purified using a multifunctional column, and their concentrations were determined using LC-UV or LC-MS(/MS). No internal standards were used. Three fortified wheat samples (0.1, 0.5 and 1 mg/kg), one naturally contaminated wheat sample, and one blank wheat sample were used. The recoveries ranged from 90% to 110% for DON and from 76% to 83% for NIV. For DON, the relative standard deviations for repeatability (RSDr) ranged from 1.1% to 7.6%. The relative standard deviations for reproducibility (RSDr) ranged from 7.2% to 25.2%. For NIV, the RSDr ranged from 2.0% to 10.7%, and the RSDr ranged from 7.0% to 31.4%. Regardless of sample and detector, the HorRat values for DON and NIV ranged from 0.4 to 1.4. Both LC-UV and LC-MS(/MS) methods were considered to be suitable for application as an official method.  相似文献   
34.
TiNi shape memory alloy (SMA) was subjected to tension at strain-controlled test on quasistatic testing machine. The nucleation, development, and saturation of the stress-induced martensitic transformation were investigated, taking into account the obtained dependency of mechanical parameters and the specimen temperature changes measured by an infrared camera (IR). Three kinds of data obtained by the IR system were analyzed: the temperature distribution on the SMA sample surface, the temperature changes derived as average from the chosen sample area, and the temperature profiles obtained along the sample length. The temperature distribution shows nucleation of the transformation process and a creation of the transformation bands. The average temperature reflects the effects of thermomechanical coupling, accompanying exothermic martensitic forward and endothermic reverse transformation. The temperature profiles revealed the temperature difference between the band and the rest of the sample. The experimental results were supported with finite element method numerical analysis (FEM). The FEM software components for structural and heat transfer problems, coupled in partitioned approach, were used for thermomechanical analysis.  相似文献   
35.
Multifunctional new material—polyurethane shape memory polymer (PU-SMP)—was subjected to tension carried out at room temperature at various strain rates. The influence of effects of thermomechanical couplings on the SMP mechanical properties was studied, based on the sample temperature changes, measured by a fast and sensitive infrared camera. It was found that the polymer deformation process strongly depends on the strain rate applied. The initial reversible strain is accompanied by a small drop in temperature, called thermoelastic effect. Its maximal value is related to the SMP yield point and increases upon increase of the strain rate. At higher strains, the stress and temperature significantly increase, caused by reorientation of the polymer molecular chains, followed by the stress drop and its subsequent increase accompanying the sample rupture. The higher strain rate, the higher stress, and temperature changes were obtained, since the deformation process was more dynamic and has occurred in almost adiabatic conditions. The constitutive model of SMP valid in finite strain regime was developed. In the proposed approach, SMP is described as a two-phase material composed of hyperelastic rubbery phase and elastic-viscoplastic glassy phase, while the volume content of phases is specified by the current temperature.  相似文献   
36.
The microstructure of ultrahigh molecular weight polyethylene (UHMW-PE) sheets biaxially drawn in the molten state was investigated by means of wide angle X-ray diffraction (WAXD), small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and electron microscopy. The crystallographic c-axis tended to be oriented in the sheet plane by the biaxial drawing in the molten state. The microstructure of the biaxially drawn UHMW-PE was shown to depend upon molecular weight of UHMW-PE. The biaxially drawn sheet of higher molecular weight (Mv = 2,700,000) showed a fibrous structure, while the lower molecular weight sample (Mv 700,000) had a lamellar structure. The result of DSC measurements suggested that a small number of nucleating extended chain crystals was produced by biaxial melt drawing of the UHMW-PE sheet with higher molecular weight.  相似文献   
37.
Elucidating the interrelation between the molecular structure and charge transport properties in conjugated polymer thin films is an essential issue in developing the design principle of high‐performance polymer materials for application in organic electronics. In particular, the backbone planarity is suggested to be a key element that governs the transport performance, especially in recently developed donor–acceptor (D–A)‐type copolymers exhibiting high mobility, whereas the direct evaluation of the intrinsic transport performance, usually realized only within the small crystalline domains, is difficult by using conventional macroscopic measurements. Here, it is demonstrated that a D–A type copolymer, PDPPF‐DTT, which consists of furan‐flanked diketopyrrolopyrrole (DPP) and dithienothiophene (DTT) units in the conjugated backbone, exhibits a highly efficient charge transport performance within the crystalline domains with a remarkably low activation energy of less than 8 meV, based on microscopic measurements using field‐induced electron spin resonance spectroscopy. This high transport performance is primarily caused by the high backbone planarity realized by introducing furan‐flanked DPP and fused dithienothiophene units, which is demonstrated from the density functional theory calculations. This result provides a microscopic indication of the effectiveness of the present molecular design to produce a planar backbone and realize highly efficient charge transport performance.  相似文献   
38.
At the present time, mobile devices, such as tablet-type PCs and smart phones, have widely penetrated into our daily lives. Therefore, an authentication method that prevents shoulder surfing is needed. We are investigating a new user authentication method for mobile devices that use surface electromyogram (s-EMG) signals, not screen touching. The s-EMG signals, which are generated by the electrical activity of muscle fibers during contraction, are detected over the skin surface. Muscle movement can be differentiated by analyzing the s-EMG. In this paper, a method that uses a list of gestures as a password is proposed. And also, results of experiments are presented that was carried out to investigate the performance of the method extracting feature values from s-EMG signals (using the Fourier transform) adopted in this research. \(Myo^{TM}\), which is the candidate of s-EMG measurement device used in a prototype system for future substantiative experiments, was used in the experiment together with the s-EMG measuring device used in the previous research to investigate its performance.  相似文献   
39.
The combination of single-ion magnets (SIMs) and metal–organic frameworks (MOFs) is expected to produce new quantum materials. The principal issue to be solved in this regard is the development of new strategies for the synthesis of SIM-MOFs. This work demonstrates a new simple strategy for the synthesis of SIM-MOFs where a diamagnetic MOF is used as the framework into which the SIM sites are doped. 1, 0.5, and 0.2 mol% of the Co(II) ions are doped into the Zn(II) sites of [CH6N3][ZnII(HCOO)3]. The doped Co(II) sites in the MOFs perform as SIM with a positive D term of zero-field splitting. The longest magnetic relaxation time is 150 ms (0.2 mol% Co) at 1.8 K under a static field of 0.1 T. Temperature dependency of the relaxation time suggests suppressing magnetic relaxation by reduction of spin–spin interaction upon doping in the rigid framework. Thus, this work represents a proof of concept for the creation of a single-ion doped magnet in the MOF. This simple synthetic strategy will be widely applied for the creation of quantum magnetic materials.  相似文献   
40.
The effect of equal-channel angular pressing(ECAP) on the pitting corrosion resistance of anodized Al-Cu alloy was investigated by electrochemical techniques in a solution containing 0.2 mol/L AlCl3 and also by surface analysis. Anodizing was conducted for 20 min at 200 and 400 A/m2 in a solution containing 1.53 mol/L H2SO4 and 0.018 5 mol/L Al2(SO4)3·16H2O at 20 °C. Anodized Al-Cu alloy was immediately dipped in boiling water for 20 min to seal the micro pores present in anodic oxide films. The time required before initiating pitting corrosion of anodized Al-Cu alloy is longer with ECAP than without, indicating that ECAP process improves the pitting corrosion resistance of anodized Al-Cu alloy. Second phase precipitates such as Si, Al-Cu-Mg and Al-Cu-Si-Fe-Mn intermetallic compounds are present in Al-Cu alloy and the size of these precipitates is greatly decreased by application of ECAP. Al-Cu-Mg intermetallic compounds are dissolved during anodization, whereas the precipitates composed of Si and Al-Cu-Si-Fe-Mn remain in anodic oxide films due to their more noble corrosion potential than Al. FE-SEM and EPMA observation reveal that the pitting corrosion of anodized Al-Cu alloy occurs preferentially around Al-Cu-Si-Fe-Mn intermetallic compounds, since the anodic oxide films are absent at the boundary between the normal oxide films and these impurity precipitates. The improvement of pitting corrosion resistance of anodized Al-Cu alloy processed by ECAP appears to be attributed to a decrease in the size of precipitates, which act as origins of pitting corrosion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号