首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3344篇
  免费   276篇
  国内免费   40篇
电工技术   90篇
综合类   12篇
化学工业   1085篇
金属工艺   115篇
机械仪表   116篇
建筑科学   132篇
矿业工程   10篇
能源动力   207篇
轻工业   282篇
水利工程   59篇
石油天然气   61篇
武器工业   5篇
无线电   267篇
一般工业技术   561篇
冶金工业   111篇
原子能技术   21篇
自动化技术   526篇
  2024年   14篇
  2023年   52篇
  2022年   88篇
  2021年   234篇
  2020年   185篇
  2019年   222篇
  2018年   298篇
  2017年   284篇
  2016年   254篇
  2015年   141篇
  2014年   254篇
  2013年   383篇
  2012年   257篇
  2011年   289篇
  2010年   178篇
  2009年   149篇
  2008年   101篇
  2007年   70篇
  2006年   54篇
  2005年   25篇
  2004年   12篇
  2003年   19篇
  2002年   11篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   13篇
  1997年   5篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1976年   3篇
  1975年   1篇
排序方式: 共有3660条查询结果,搜索用时 15 毫秒
71.
Li  Hong Xian  Zhang  Yitao  Edwards  David  Hosseini  M. Reza 《Building Simulation》2020,13(2):475-487
Building Simulation - Australia is receiving an average of 58 million PJ of solar radiation per year, which is about 1000 times larger than its total energy generation. Roof-top solar photovoltaic...  相似文献   
72.
Wireless Networks - Aggregation of resources in space, spectrum, and so on, is the fundamental idea behind many technology building blocks of 5G networks, such as massive multi-input multi-output...  相似文献   
73.
There are several kinds of catalyst for tar reduction such as Ni-based catalysts, alkali catalysts, metal catalysts, and char. Char is a nonmetallic material which be generated by the devolatilization of organic materials. In this article, by using an experimental setup we tried to study the effect of char particles as a catalyst on the tar concentration and produced gas from steam gasification of bitumen oil and to introduce effective parameters in the process of syngas generation. With the increase of gasification temperature from 800 to 950°C, the hydrogen increased sharply from 28.4 vol% to 34.9 vol% and 18.5 vol% to 21.3 vol%, while CO decreased from 12.5 vol% to 14.9 vol% and 14.8 vol% to 18.1 vol% for gasification with and without char, respectively. As a result, it was found that the gas produced is not sensitive to the pressure changes.  相似文献   
74.
A novel concept for integrating fuel cells with desalination systems is proposed and investigated in this work. Two unique case studies are discussed — the first involving a hybrid system with a reverse osmosis (RO) unit and the second — integrating with a thermal desalination process such as multi-stage flash (MSF). The underlying motivation for this system integration is that the exhaust gas from a hybrid power plant (fuel cell/turbine system) contains considerable amount of thermal energy, which may be utilized for desalination units. This exhaust heat can be suitably used for preheating the feed in desalination processes such as reverse osmosis which not only increases the potable water production, but also decreases the relative energy consumption by approximately 8% when there is an increase of just 8°C rise in temperature. Additionally, an attractive hybrid system application which combines power generation at 70%+ system efficiency with efficient waste heat utilization is thermal desalination. In this work, it is shown that the system efficiency can be raised appreciably when a high-temperature fuel cell co-generates DC power in-situ with waste heat suitable for MSF. Results indicate that such hybrid system could show a 5.6% increase in global efficiency. Such combined hybrid systems have overall system efficiencies (second-law base) exceeding those of either fuel-cell power plants or traditional desalination plants.  相似文献   
75.
The wicking phenomenon is of prime importance with regards to biomedical applications of nanofiber yarns such as suture yarns and tissue scaffolds. In such applications, the yarns are usually subjected to cyclic tensile forces and biological tensile stresses. There is a lack of science behind the effect of fatigue on wicking properties of nanofiber yarns and this work aims at exploring this venue. Wicking properties of polyamide 66 nanofiber yarns are investigated by tracing the color change in the yarn structure resulting from pH changes during the capillary rise of distilled water. Results show that applying cyclic loading increases equilibrium wicking height in the Lucus–Washburn equation, which is attributed to changes in the overall pore structure in the cyclic loaded yarn. The likely causes of these changes are studied by scanning electron microscope, which reveals disentangled, more or less aligned and parallel nanofibers with a smaller radius in the nanofibrous structure. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47206.  相似文献   
76.
In the presence of modified methylaluminoxane as cocatalyst, the behavior of a binary catalytic system based on pyridine-imine nickel ( N ) and iron ( F ) catalysts was evaluated in order to reach a proper mixture of polyethylene (PE). A computational study along with kinetic profile suggested that the catalyst F with higher electron affinity (A) and electrophilicity (ω) in the methyl cationic active center and stronger interaction with the monomer led to high integrated monomer consumption and higher activity. In addition, the samples produced by the mixture of catalysts showed a higher value of [19.4 × 104 g (PE) mol (Fe+Ni)−1 h−1)], melting point (127.8 °C), and crystallinity extent (41.29%) than the samples produced by the single catalysts. The addition of multiwalled carbon nanotubes (MWCNT) into the polymerization media reduced the activity of catalysts [from 7.50 × 104 to 0.66 × 104 g (PE) mol (Fe+Ni)−1 h−1] and the thermal properties of the low-density polyethylene nanocomposite samples. However, the sample containing 2.33% MWCNT20-30 improved the total thermal stability of the neat polyethylene blend up to 400 °C. Scanning electron microscope images of the samples demonstrated irregular to virtually uniform morphologies were obtained through the in situ and solution-mixing techniques. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47376.  相似文献   
77.
In this work, neat and modified nanodiamond (ND) particles were embedded into high-density polyethylene (HDPE) membranes to improve hydrophilicity and antifouling properties. The membranes were prepared via thermally induced phase separation (TIPS) method and used for pharmaceutical wastewater treatment in membrane bioreactors (MBR) system. To prevent the agglomeration of ND, it was modified using two methods: thermal carboxylation (ND-COOH) and grafting with polyethylene glycol (ND-PEG). Membranes with different concentration of ND-COOH and ND-PEG nanoparticles ranging from 0.00 to 1.00 wt % were prepared and characterized using a set of analyses including water contact angle, pure water flux, tensile strength, differential scanning calorimeter, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. It was found that the optimum contents of ND-COOH and ND-PEG nanoparticles were 0.50 wt % and 0.75 wt %, respectively. The interfacial interaction between nanoparticles and HDPE matrix was studied based on Pukanzsky model. To examine the performance of membranes, critical flux, filtration experiment in the MBR, and fouling analysis of membranes were carried out. The results showed that among the fabricated membranes, 0.75 wt % HDPE/ND-PEG membrane had the highest water flux and the best antifouling properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47914.  相似文献   
78.
Possessing unique designs and properties absent in conventional materials, nanocomposites have made a remarkable imprint in science and technology. This is particularly true regarding the polymer matrix composites when they are further reinforced with nanoparticles. In this study, the effects of different weight percentages (0, 0.1, 0.2, 0.3, 0.4, and 0.5) of surface-modified graphene nanoplatelets (GNPs) on the microhardness and wear properties of basalt fibers/epoxy composites were investigated. The GNPs were surface modified by silane, and the composites were made by the hand lay-up method. The wear tests were conducted under two different loads of 20 and 40 N. The best wear properties were achieved at 0.3 wt % GNPs as a result of the GNPs' self-lubrication property and the formation of a stable transfer/lubricating film at the pin and disk interface. Moreover, the friction coefficient was lower at the higher normal load of 40 N. The microscopic studies by FESEM and SEM showed that the presence of GNPs up to 0.3 wt % led to the stability of the transfer/lubricating film by enhancing the adhesion of the basalt fibers to the epoxy resin. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47986.  相似文献   
79.
Taguchi method (TM) and response surface methodology (RSM) have been employed to optimize three parameters, including the amounts of P123, the amounts of nitric acid and calcination temperature, in order to define an optimal setting for sol-gel synthesis of high surface area mesoporous alumina powder (MA). Herein, the comparison of the both statistical approaches has been examined and discussed considering the nitrogen adsorption as the response variable because this important character for mesoporous materials is exceedingly sensitive to the synthesis parameters. The BET surface area (SBET) and pore volume of MA under Taguchi optimal condition were 323.5 m2 g−1 and 0.551 cm3 g−1, respectively, by conducting confirmation test. Furthermore, the confirmation test showed high SBET of MA (363.4 m2 g−1), which was in a good agreement with calculated SBET result (431.25 m2 g−1) by a quadratic model under RSM optimal condition. Moreover, 3D response surface plots and 2D contour plots of desirability have been discussed to visualize the influence of input factors on response variable. It is also concluded that RSM shows more appropriate (12.33% higher SBET than TM) and efficient optimal condition with determining a quadratic function as the relationship between SBET and synthesis parameters.  相似文献   
80.
This paper deals with influence of chitosan nanoparticles (CNPs) loaded by tetracycline, as a drug, on the physico-mechanical and antibacterial properties as well as drug release behavior of poly(vinyl alcohol), PVA, hydrogels prepared by electron beam irradiation. The formation of spherical chitosan particles in nanoscale size prepared by an ionic gelation method was confirmed by FTIR and UV spectroscopy, and scanning electron microscopy analyses. The drug release kinetic studies from drug loaded chitosan nanoparticles (DLCNPs) at pH = 7.4 revealed a linear and steady release behavior over long period of time. The theoretical analysis of the swelling kinetic data, using Peppas’s model showed that the swelling kinetic is governed by Fickian diffusion for all the prepared hydrogels, however, the water diffusion coefficient, and therefore, the swelling content were lower for the hydrogels loaded with DLCNPs as compared to the ones with the neat drug. In agreement with these results, the hydrogels containing DLCNPs exhibited a more controlled drug release behavior with significantly stronger antibacterial activity. The tensile mechanical properties of the hydrogels not affected by the DLCNPs were found to be suitable for wound dressing applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号