An interesting universal modeling tool for rechargeable lithium batteries is presented in this paper. The generic model is based on an equivalent circuit technique commonly used in electrochemical impedance characterization. Therefore, the parameters used in the model can be easily parameterized from the electrochemical impedance derivations, which provide a convenient integration with experimental cell characterizations. Such integration offers the universality in this modeling approach. 相似文献
Sandia National Laboratories has conducted a sequence of studies on the performance of lithium ion and other types of electrochemical cells using inductive models. The objectives of some of these investigations are: (1) to develop procedures to rapidly determine performance degradation rates while these cells undergo life tests; (2) to model cell voltage and capacity in order to simulate cell output under variable load and temperature conditions; (3) to model rechargeable battery degradation under conditions of cyclic charge/discharge, and many others. Among the uses for the models are: (1) to enable efficient predictions of battery life; (2) to characterize system behavior.
Inductive models seek to characterize system behavior using experimentally or analytically obtained data in an efficient and robust framework that does not require phenomenological development. There are certain advantages to this. Among these advantages is the ability to avoid making measurements of hard to determine physical parameters or having to understand cell processes sufficiently to write mathematical functions describing their behavior. We have used artificial neural networks (ANNs) for inductive modeling, along with ancillary mathematical tools to improve their accuracy.
This paper summarizes efforts to use inductive tools for cell and battery modeling. Examples of numerical results are presented. 相似文献
Fe-V alloys containing 1.06 wt pct V, 5.23 wt pct V and 15.55 wt pct V, have been nitrided in purified NH3 gas in temperatures ranging between 773 K and 1173 K. The nitriding kinetics of all these alloys in this temperature range
obey a parabolic rate law. The comparison of the nitriding rate constants evaluated from experimental results and from the
calculations based on Wagner's internal oxidation model show a deviation which is explained in terms of the effect of the
lattice strains on the solubility and diffusivity of nitrogen in the Fe matrix. The hardness of the nitrided zone increases
with the vanadium content in solution and reaches a saturation value of about 1300 VHN (12.75 GNm−2) which corresponds to about 4 wt pct V. The hardening in the nitrided region is cuased by the precipitation of VN which cannot
be observed on specimens nitrided at the lower limits of the temperature range. Precipitates grown in size can be seen on
specimens nitrided at 1073 K and 1173 K. 相似文献
Commercial alloy ZK60 (Mg-6 wt%Zn-0.8 wt% Zr) was used as a hydrogen-storage material to study the effect of cold rolling, ball milling, and plus graphite additives on hydrogen-storage characteristics, hydrogen absorption–desorption behavior, and the related microstructural change of the alloy. Experimental results showed that cold-rolled alloy could not be activated easily. Even after ball milling for 20 h and hydrogen absorption–desorption cycling for 10 times, no saturated hydrogen absorption was observed for cold-rolled alloy. In contrast, alloys with 5 wt% graphite additives could be easily activated after the first hydrogen absorption–desorption cycle, and a saturated hydrogen absorption of 6.9 wt% was obtained after absorption–desorption cycling for five times. A hydrogen absorption of 5.52 wt%, equivalent to 80% of the saturated absorption amount, was measured in 5 min, showing a hydrogen absorption rate of 1.104 wt%/min. The sample reached saturation in 30 min. 相似文献
The influence of elongation and shear rates induced by the geometry of spinnerets on gas performance of PES hollow fiber membranes has been studied. Different elongation and shear rates were introduced in various spinnerets with flow angles of 60°, 75° and 90° by changing the flow rate of dope solution. The PES hollow fiber membranes were fabricated under the wet-spun condition without extra drawing force and their gas performances were tested by using O2 and N2. The flow profiles of dope solution and the elongation and shear rates at the outermost point of the outlet of spinnerets were simulated by the computational fluid dynamics model. A hypothetic mechanism is assumed to explain the effects of elongation and shear rates on the changes of conformation of polymer chain. While trying to correlate the elongation and shear rates with the gas performance of hollow fibers, we have come to some preliminary conclusions that the elongation rate has more contribution portion in permselectivity than in permeance and the shear rate has more contribution portion in permeance than in permselectivity. 相似文献
The relationship between the mean glandular dose (MGD) and the compressed breast thickness (CBT) is commonly used for the presentation of mammographic dose survey results and could also be useful for the assessment of individual breast doses retrospectively in case of lack of necessary dosimetric instrumentation. The high data scattering from the best fit reduces the reliability of this technique. The aim of this study was to investigate the accuracy of this relationship using the data collected from a patient survey and phantom experiment. Patients were divided into three different groups according to their breast glandularities, which were predicted from the inspection of previous mammograms. X-ray beam qualities that will be used in patient examinations were determined according to breast thickness and predicted glandularities. The MGD versus CBT relationship for all the examined patients resulted in a poor correlation (R(2) = 0.28). This relationship was separately obtained for each glandularity group and also for sub-groups of specific beam qualities. The best correlation (R(2) = 0.73) was obtained for the fatty breast group and Mo/Mo combination. A low correlation (R(2) = 0.34) was observed in the mid-glandularity group due to inclusion of a wide range of glandularities in this group. In the case of the dense breast group, although the glandularity range was narrow, there were e still high data scattering (R(2) = 0.25). This was probably due to the use of Mo/Rh and Mo/Mo combinations. This is validated by obtaining the MGD-CBT relationship specific to Mo/Mo combination (R(2) = 0.61). 相似文献
Nickel-cobalt oxide with spinel structure was successfully fabricated using a wet chemical route followed by calcinations at 300 °C. In nickel-cobalt spinel oxide, Ni2+ ions occupy the octahedral sites and Co3+ ions are distributed over both octahedral and tetrahedral sites. Very interestingly, nickel-cobalt spinel oxide does not only show a p-type semi-conducting behavior material but also exhibits desired transparency in infrared wavelengths. Electrical and optical properties of the deposited films were investigated as a function of different processing conditions. The sputtering target is fabricated by homogeneously mixing oxide powders and followed by sintering at 1,500 °C. The nickel-cobalt oxide film showed a resistivity as low as 10?2 Ω-cm by radio frequency (RF) magnetron sputtering in a pure oxygen atmosphere. The sputter-deposited nickel-cobalt oxide films also showed more than 70% transmittance in the infrared range. 相似文献
Ventilation with nitric oxide (NO) is increasingly being used to treat pulmonary hypertension in the newborn. In the brain, NO has vasoactive properties and is involved in neurotransmission. However, the effect of inhaled NO on the cerebral blood flow (CBF) and on the cerebral activity is not known. Furthermore, there is little information on the influence of this free radical gas on the redox status in pulmonary vessels. We therefore investigated the effect of inhaled NO (2-60 ppm) on CBF, cerebral activity and redox status in blood effluent from the pulmonary circulation in 6 ventilated newborn lambs before and during group B streptococci (GBS)-induced pulmonary hypertension. Blood pressure in the pulmonary artery (P(ap)) and aorta (Pao), carotid artery blood flow (Qcar) to assess changes in CBF, and electrocortical activity were measured. Blood gases, indices of free radical status and methemoglobin were determined in blood samples obtained from the left ventricle. Inhalation of NO, before and during GBS-induced pulmonary hypertension, decreased P(ap) and PCO2 and increased PO2. Multiple linear regression revealed that Qcar was positively related to PCO2, but not to inhaled NO or PO2 before or during GBS conditions. Electrocortical activity and indices of antioxidative capacity and lipid peroxidation did not change significantly. Methemoglobin was not detected. In conclusion, inhalation of NO (up to 60 ppm) lowered P(ap) without directly affecting CBF, electrocortical activity, and redox status in the pulmonary vessels. CBF, however, can indirectly be influenced by NO-mediated changes in PCO2. 相似文献
Abstract An investigation was carried out to determine the precipitation behavior and strengthening effect in various thermomechanical treatments of Al‐Zn‐Mg alloys containing high Zn and low Mg contents. The results show that the precipitation behavior is largely influenced by a plastic deformation in the thermomechanical treatment, and the final precipitate and dislocation structures are greatly related to the influenced precipitation behavior; hence the strengthening effect is determined. Different alloy contents also cause different influences. A super‐strengthening occurs in the T‐AHA (80°C) treatment attributed to the optimum combination of dislocation and precipitate structure. 相似文献