This paper proposes a sequential design scheme for switching ℌ∞ LPV (Linear Parameter-Varying) control, aiming to reduce the computational complexity of the associated optimization problem. Different from the traditional approach that simultaneously designs switching LPV controllers and solves a high-dimensional optimization problem, the proposed sequential design approach renders a bundle of low-dimensional optimization problems to be solved iteratively. Individual ℌ∞ LPV controller for each subregion is synthesized by independent PLMIs (Parametric Linear Matrix Inequalities) to guarantee ℌ∞ performance, and controller variables are interpolated on the overlapped subregions such that the ℌ∞ performance is also guaranteed on the overlapped subregion. Numerical examples are used to demonstrate the effectiveness of this method to reduce the computational load in each design iteration and improved ℌ∞ performance over the conventional simultaneous design method with well-tuned interpolation coefficient.
International Journal of Control, Automation and Systems - This paper presents a novel filtering based multi-innovation estimation algorithm for output-error autoregressive moving average (i.e.,... 相似文献
International Journal of Control, Automation and Systems - In this paper, we discuss actuator fault and sensor fault detection and isolation (FDI) problems for a class of switched nonlinear systems... 相似文献