首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5351篇
  免费   320篇
  国内免费   21篇
电工技术   83篇
综合类   8篇
化学工业   1107篇
金属工艺   118篇
机械仪表   135篇
建筑科学   177篇
矿业工程   8篇
能源动力   183篇
轻工业   342篇
水利工程   34篇
石油天然气   23篇
无线电   988篇
一般工业技术   1008篇
冶金工业   479篇
原子能技术   31篇
自动化技术   968篇
  2023年   100篇
  2022年   148篇
  2021年   289篇
  2020年   222篇
  2019年   185篇
  2018年   235篇
  2017年   195篇
  2016年   287篇
  2015年   170篇
  2014年   228篇
  2013年   371篇
  2012年   281篇
  2011年   320篇
  2010年   232篇
  2009年   227篇
  2008年   221篇
  2007年   198篇
  2006年   148篇
  2005年   131篇
  2004年   105篇
  2003年   93篇
  2002年   77篇
  2001年   86篇
  2000年   53篇
  1999年   66篇
  1998年   226篇
  1997年   109篇
  1996年   86篇
  1995年   81篇
  1994年   52篇
  1993年   70篇
  1992年   39篇
  1991年   39篇
  1990年   26篇
  1989年   36篇
  1988年   22篇
  1987年   21篇
  1986年   23篇
  1985年   22篇
  1984年   25篇
  1983年   16篇
  1982年   15篇
  1981年   14篇
  1980年   12篇
  1979年   12篇
  1978年   12篇
  1977年   15篇
  1976年   9篇
  1975年   9篇
  1973年   8篇
排序方式: 共有5692条查询结果,搜索用时 15 毫秒
991.
The redox performance of pure iron oxide (Fe2O3) and iron oxide modified with ceria (CeO2) and/or zirconia (ZrO2) as an oxygen carrier was investigated for hydrogen (H2) production through a methane-steam redox process. The addition of both CeO2 and ZrO2 were found to be a more effective modification of Fe2O3 than the addition CeO2 or ZrO2 alone. It was found that the reducibility of Fe2O3 was enhanced by CeO2 and the thermal stability of Fe2O3 was improved by ZrO2. These results, therefore, led to the conclusion of the synergistic effect in the Fe2O3-CeO2-ZrO2 mixed oxide. As a result, both the redox activity and the thermal stability were significantly improved, and increases in H2 yield and purity could be maintained by the modification. The redox temperature was found to have a significant effect on redox performance. The production of H2 was considerably improved when the redox temperature was increased from 650 to 750 °C. The ZrO2 concentration in Fe2O3-CeO2-ZrO2 mixed oxide samples was also found to influence performance with the highest H2 yield observed at a ZrO2 concentration of 75 wt.%. Although all materials tested showed a reduction in surface area in the first redox cycle, the change in surface area in subsequent cycles was found to be smaller and the yield of H2 could be maintained at a constant level over a longer period for the mixed oxide containing 75 wt.% ZrO2.  相似文献   
992.
Engineered nanoparticles (ENPs), such as metallic or metallic oxide nanoparticles (NPs), have gained much attention in recent years. Increasing use of ENPs in various areas may lead to the release of ENPs into the environment and cause the contamination of agricultural and food products by ENPs. In this study, we selected two important ENPs (zinc oxide [ZnO] and silver [Ag] NPs) as potential food contaminants and investigated their toxicity via an in vitro model using Caco‐2 cells. The physical properties of ENPs and their effects on Caco‐2 cells were characterized by electron microscopy and energy dispersive X‐ray spectroscopic (EDS) techniques. Results demonstrate that a significant inhibition of cell viability was observed after a 24‐h of exposure of Caco‐2 cells to 3‐, 6‐, and 12‐mM ZnO NPs or 0.5‐, 1.5‐, and 3‐mM Ag NPs. The noticeable changes of cells include the alteration in cell shape, abnormal nuclear structure, membrane blebbing, and cytoplasmic deterioration. The toxicity of ZnO NPs, but not that of Ag NPs after exposure to simulated gastric fluid, significantly decreased. Scanning transmission electron microscopy shows that ZnO and Ag NPs penetrated the membrane of Caco‐2 cells. EDS results also confirm the presence of NPs in the cytoplasm of the cells. This study demonstrates that ZnO and Ag NPs have cytotoxic effects and can inhibit the growth of Caco‐2 cells.  相似文献   
993.
基于三维仿真软件,研究了缸内直喷(GDI)发动机在低负荷运行工况下通过喷水对缸内压力和排放的影CFD NOx响。在计算过程中,喷水设置在发动机压缩冲程中(℃A),汽油喷入缸内的时段为660~680℃。研究结果表640~650 A明,喷入一定量的水之后,发动机的热效率有所提高,缸内局部火焰温度降低,氮氧化合物排放也随之降低。  相似文献   
994.
Electromechanical effects are ubiquitous in biological and materials systems. Understanding the fundamentals of these coupling phenomena is critical to devising next‐generation electromechanical transducers. Piezoelectricity has been studied in detail, in both the bulk and at mesoscopic scales. Recently, an increasing amount of attention has been paid to flexoelectricity: electrical polarization induced by a strain gradient. While piezoelectricity requires crystalline structures with no inversion symmetry, flexoelectricity does not carry this requirement, since the effect is caused by inhomogeneous strains. Flexoelectricity explains many interesting electromechanical behaviors in hard crystalline materials and underpins core mechanoelectric transduction phenomena in soft biomaterials. Most excitingly, flexoelectricity is a size‐dependent effect which becomes more significant in nanoscale systems. With increasing interest in nanoscale and nano‐bio hybrid materials, flexoelectricity will continue to gain prominence. This Review summarizes work in this area. First, methods to amplify or manipulate the flexoelectric effect to enhance material properties will be investigated, particularly at nanometer scales. Next, the nature and history of these effects in soft biomaterials will be explored. Finally, some theoretical interpretations for the effect will be presented. Overall, flexoelectricity represents an exciting phenomenon which is expected to become more considerable as materials continue to shrink.  相似文献   
995.
996.
  • This paper empirically tests the effectiveness of information and communications technology (ICT) knowledge transfer and adoption in the multinational enterprise (MNE) as an issue of critical importance to contemporary MNE functioning. In contrast to mainstream thinking on absorptive capacity, but in line with prevailing international business theory, our research supports the proposition that perceptions of procedural justice, rather than absorptive capacity, determine effectiveness, especially in cases of high tacit knowledge transfers.
  • Data was collected from senior ICT representatives in 86 Canadian subsidiaries of foreign owned MNEs. Each of these subsidiaries recently experienced a significant ICT transfer imposed by the parent organization.
  • Support was found for the main propositions: Procedural justice significantly predicted successful ICT transfer and adoption, while absorptive capacity was not significant. These findings are consistent even when knowledge tacitness was high.
  • The perceived success of the ICT transfer as well as its adoption varied widely across these firms. The potential reasons for this divergence in effectiveness are manifold, but our findings suggest that in situations of substantial knowledge tacitness, a higher level of procedural justice, rather than a higher level of absorptive capacity, is critical to effective transfer and adoption.
  相似文献   
997.
The high-temperature thermal stability of the ultrafine-grained (UFG) microstructures in low stacking fault energy silver was studied by differential scanning calorimetry (DSC). The UFG microstructures were achieved by equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) at room temperature (RT). The defect structure in the as-processed samples was examined by electron microscopy and X-ray line profile analysis. The stored energy calculated from the defect densities was compared to the heat released during DSC. The sum of the energies stored in grain boundaries and dislocations in the ECAP-processed samples agreed with the heat released experimentally within the experimental error. The temperature of the DSC peak maximum decreased while the released heat increased with increasing numbers of ECAP passes. The released heat for the specimen processed by one revolution of HPT was much smaller than after 4–8 passes of ECAP despite the 2 times larger dislocation density measured by X-ray line profile analysis. This dichotomy was caused by the heterogeneous sandwich-like microstructure of the HPT-processed disk: about 175 μm wide surface layers on both sides of the disk exhibited a UFG microstructure while the internal part was recrystallized, thereby yielding a relatively small released heat.  相似文献   
998.
In this study, core–shell rubber (CSR) nanoparticles with approximate particle size of 35 nm were used as a modifier for the epoxy polymer. The effects of various CSR contents in the epoxy matrix on mode I interlaminar fracture toughness, tensile strength, and fatigue life of the carbon fabric reinforced epoxy (CF/EP) composites were investigated. The experimental results showed that the mode I interlaminar fracture toughness at crack initiation and propagation significantly improved by 71.21 and 58.47 %, respectively, when 8.0 wt% CSR was dispersed in the epoxy matrix. The fatigue life of the modified CF/EP composites at all of CSR contents dramatically increased 75–100 times longer than that of the unmodified CF/EP composites at high cycle fatigue while tensile strength slightly increased by about 10 %. Field emission scanning electron microcopy (FESEM) observations of the fracture surfaces were conducted to explain failure mechanisms of CSR addition to the CF/EP composites. The evidences of the rubber nanoparticle debonding, plastic void growth, and microshear banding were credited for delaying the onset of matrix crack, and reducing the crack growth rate, as a result, attributed to increase in the mechanical properties of the CF/EP composites.  相似文献   
999.
We present a simple method to fabricate a uniform-sized graphene–metal–polymer composite microsphere of core–shell structure. On the surface of amine-functionalized polymer microsphere, graphene oxide (GO) sheets were affixed to give a core–shell structure by self-assembly process followed by the immobilization of platinum (Pt) ions to the assembled GO shell. Subsequently, they were chemically reduced in situ converting both GO and Pt ions to reduced GO (RGO) and Pt nanoparticles (NPs), respectively. As a result, a robust RGO-Pt composite shell, composed of RGO sheets and well-distributed Pt NPs, was fabricated on the microsphere surface. Meanwhile, the insulative GO shell was converted to the conductive RGO-Pt shell giving 24.0 S m?1 of electrical conductivity. We demonstrated that the electrical property of the shell was significantly improved by the incorporation of Pt NPs.  相似文献   
1000.
Nanoparticles are increasingly used in medical applications such as drug delivery, imaging, and biodiagnostics, particularly for cancer. The design of nanoparticles for tumor delivery has been largely empirical, owing to a lack of quantitative data on angiogenic tissue sequestration. Using fluorescence correlation spectroscopy, the deposition rate constants of nanoparticles into angiogenic blood vessel tissue are determined. It is shown that deposition is dependent on surface charge. Moreover, the size dependency strongly suggests that nanoparticles are taken up by a passive mechanism that depends largely on geometry. These findings imply that it is possible to tune nanoparticle pharmacokinetics simply by adjusting nanoparticle size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号