首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   27篇
  国内免费   4篇
电工技术   15篇
化学工业   76篇
金属工艺   8篇
机械仪表   20篇
建筑科学   20篇
能源动力   16篇
轻工业   19篇
水利工程   8篇
石油天然气   3篇
无线电   21篇
一般工业技术   59篇
冶金工业   6篇
原子能技术   1篇
自动化技术   83篇
  2024年   2篇
  2023年   4篇
  2022年   15篇
  2021年   23篇
  2020年   27篇
  2019年   27篇
  2018年   33篇
  2017年   29篇
  2016年   24篇
  2015年   14篇
  2014年   26篇
  2013年   36篇
  2012年   24篇
  2011年   26篇
  2010年   12篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有355条查询结果,搜索用时 15 毫秒
61.
In the recent years, silane materials, because of their environmental friendly nature and ease of application have been attended as an alternative for chromate conversion coatings. Different materials were searched for improvement of the efficiency of silane formulation. In this research, pretreatment of carbon steel substrates was carried out using γ-glycidoxypropyl-trimethoxysilane (γ-GPS) as functionalized silane. Cerium nitrate as a corrosion inhibitor material was introduced into the silane material and epoxy resin was applied on the pretreated steel substrates. Effects of the pretreatment on electrochemical properties, cathodic disbondment, dry and wet adhesion strength, and surface morphology of resultant epoxy coating were investigated. Results showed that pretreatment of steel substrate with γ-glycidoxypropyl-trimethoxysilane (γ-GPS) doped with cerium nitrate leads to improvement of cathodic disbondment and also dry and wet adhesion of epoxy coating. Furthermore, this type of pretreatment reduced the disruption of interfacial bonds at the binder/substrate interface. Addition of 2?wt% cerium nitrate into the silane formulation led to the maximum efficiency of resultant coating.  相似文献   
62.
In this study data from 17 years (1990–2006) were collected to determine energy intensive areas and evaluate energy parameters of Iran's agronomy sector. All the direct and indirect inputs of energy for the production of 19 agricultural commodities were evaluated. The inputs and outputs were calculated by multiplying the amounts of inputs and outputs by their energy equivalents. The results indicated that total energy input increased from 32.40 GJ ha?1 in 1990 to 37.20 GJ ha?1 in 2006. At the same period, total output energy increased from 30.85 to 43.68 GJ ha?1. The results show that irrigation with 40.0% and fertilizer (28.4%) had the highest share in energy consumption. The average net energy gain was a positive value; however, about 87% of the input energy emanates from non-renewable sources of energy. The mean energy ratio was estimated to be 1.07 and showed an increasing trend during the period rising from 0.95 in 1990 to 1.17 in 2006. This indicates that increased use of inputs ha?1 in production was accompanied by a larger increase in the output levels. It can be inferred from the results that improvements in irrigation and fertilizer application can significantly affect the energy efficiency of Iranian agriculture.  相似文献   
63.
The fracture toughness and deformation mechanism of PP/CaCO3 (15 wt.%) composites were studied and related to load-bearing capacity of the particles. To alter the load-bearing capacity of the particles, different particle sizes (0.07–7 μm) with or without stearic acid coating were incorporated. The fracture toughness of the composites was determined using J-Integral method and the deformation mechanism was studied by transmission optical microscopy of the crack tip damage zone. It was observed that the load-bearing capacity of the particles decreased by reduction of particle size and application of coating. A linear relationship between normalized fracture toughness and inverse of load-bearing capacity of particles was found. The crack tip damage zone in composites, which consists in massive crazing, further grows by reduction in load-bearing capacity.  相似文献   
64.
Software metrics rarely follow a normal distribution. Therefore, software metrics are usually transformed prior to building a defect prediction model. To the best of our knowledge, the impact that the transformation has on cross-project defect prediction models has not been thoroughly explored. A cross-project model is built from one project and applied on another project. In this study, we investigate if cross-project defect prediction is affected by applying different transformations (i.e., log and rank transformations, as well as the Box-Cox transformation). The Box-Cox transformation subsumes log and other power transformations (e.g., square root), but has not been studied in the defect prediction literature. We propose an approach, namely Multiple Transformations (MT), to utilize multiple transformations for cross-project defect prediction. We further propose an enhanced approach MT+ to use the parameter of the Box-Cox transformation to determine the most appropriate training project for each target project. Our experiments are conducted upon three publicly available data sets (i.e., AEEEM, ReLink, and PROMISE). Comparing to the random forest model built solely using the log transformation, our MT+ approach improves the F-measure by 7, 59 and 43% for the three data sets, respectively. As a summary, our major contributions are three-fold: 1) conduct an empirical study on the impact that data transformation has on cross-project defect prediction models; 2) propose an approach to utilize the various information retained by applying different transformation methods; and 3) propose an unsupervised approach to select the most appropriate training project for each target project.  相似文献   
65.
Telecommunication Systems - In a complex network as a cloud computing environment, security is becoming increasingly based on deception techniques. To date, the static nature of cyber networks...  相似文献   
66.
67.
In the present study, multilayered Cr–N/Cr–Al–N coatings were prepared by cathodic arc physical vapor deposition (PVD) with different numbers of layers and the same total thickness on AISI 630 steel in an attempt to improve the wear and erosion–corrosion resistance. Structural analysis of the coatings was performed by field scanning electron microscopy, X-ray diffraction (XRD), and energy-dispersive spectroscopy. Depth profiles and roughness parameters of worn surfaces were calculated after erosion and wear tests. XRD indicated that nitride compounds were formed in multilayer coatings by PVD. The Cr–N/Cr–Al–N coating exhibited superior corrosion resistance compared with AISI 630 substrate. The erosion–corrosion results revealed that the smoothest wear track with the minimum erosion rate and wear depth was obtained for five- and seven-layered coatings. The failure mechanism of the bare substrate was influenced by plastic deformation via cutting and plowing, while the failure mechanism for coated samples was chipping and delamination. According to the wear results, the multilayer coatings showed a lower friction coefficient and better surface morphology that demonstrated their high ability for wear protection.  相似文献   
68.
(Hf1-xZrx)B2 solid solution powders were synthesized by two methods. First, solution-based processing of HfCl4, ZrCl4, sucrose, and H3BO3 was conducted followed by heat treatment in Argon to carry out the carbothermal reduction (CTR) reaction to form the diboride powders. Alternatively, in the so-called borohydride reduction (BHR) method, HfCl4, ZrCl4 and NaBH4 were mixed in an Argon glove box followed by heat treatment in Argon at 700?1500 °C. The synthesized powders were characterized by XRD, SEM, TEM, EDS, and TGA, and the influence of different parameters such as starting composition, heat treatment temperature and time on products characteristics were revealed. Both CTR and BHR solid solution powders were then consolidated within ~5 min in a homemade flash sintering (FS) setup. The composition, microstructure, hardness, and thermal-oxidation properties of flash sintered ceramics were characterized, and the implication of this study and directions for future research were discussed.  相似文献   
69.
In this research, the corrosion resistance and adhesion property of a synthetic rubber-based primer reinforced with different ratios of micaceous iron oxide (MIO) pigments were studied. Coatings were applied on carbon steel panels and also on steel pipes of 219.1 mm outer diameter. Scanning electron microscopy (SEM) was used to investigate the dispersion of MIO particles in the rubbery matrix. The anticorrosion performance of the coatings was studied, using electrochemical impedance spectroscopy (EIS) and salt spray tests. In addition, the adhesion of primers to carbon steel substrates was evaluated by pull-off test. In order to investigate the effect of MIO particles on the flexibility of the pigmented primers, a cupping test was conducted. The adhesion of cold-applied tape to the formulated primers was assessed by peel adhesion test using hanging mass method. The results indicated that adding 5, 10, and 15 wt% of MIO pigments into the primer improved corrosion resistance of the coatings. An increase in the MIO loading up to 10 wt%, improved the adhesion of the primer to both steel substrate and cold-applied tape.  相似文献   
70.
Methylammonium lead iodide (MAPbI3) perovskite has garnered significant interest as a versatile material for optoelectronic applications. The temperature-dependent photoluminescence (TDPL) and phase-transition behaviors revealed in previous studies have become standard indicators of defects, stability, charge carrier dynamics, and device performance. However, published reports abound with examples of irregular photoluminescence and phase-transition phenomena that are difficult to reconcile, posing major challenges in the correlation of those properties with the actual material state or with the subsequent device performance. In this paper, a unifying explanation for the seemingly inconsistent TDPL and phase-transition (orthorhombic-to-tetragonal) characteristics observed for MAPbI3 is presented. By investigating MAPbI3 perovskites with varying crystalline states, ranging from polycrystal to highly oriented crystal as well as single-crystals, key features in the TDPL and phase-transition behaviors are identified that are related to the extent of crystal domain-size-dependent residual stress and stem from the considerable volume difference (ΔV ≈ 4.5%) between the primitive unit cells of the orthorhombic (at 80 K) and tetragonal phases (at 300 K) of MAPbI3. This fundamental connection is essential for understanding the photophysics and material processing of soft perovskites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号