首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   2篇
  国内免费   14篇
综合类   1篇
化学工业   9篇
金属工艺   2篇
机械仪表   2篇
建筑科学   1篇
能源动力   3篇
轻工业   2篇
水利工程   2篇
无线电   1篇
一般工业技术   17篇
冶金工业   9篇
原子能技术   2篇
自动化技术   7篇
  2024年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2012年   9篇
  2011年   14篇
  2010年   3篇
  2009年   7篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1993年   1篇
排序方式: 共有58条查询结果,搜索用时 109 毫秒
11.
ZnAl2O4 and ZnO nanostructure particles and in situ crystallization of zinc aluminate and zinc oxide coating layers on sintered α-Al2O3 and γ-Al2O3 granules by the microwave-assisted combustion method were investigated. For powders, the effects of solution pH value and for coated samples the influence of support type on the structure, microstructure, and photocatalytic activity of powders were studied. Results showed that variation of synthesis pH value caused to considerable change in agglomeration, specific surface area, obtaining up to 88 and 92% yields for zinc aluminate and zinc oxide nanoparticles, respectively. γ-alumina granules were more appropriate supports than the α-alumina ones because of the better photocatalytic activities and lower extent of the attritions for both zinc aluminate and zinc oxide coating layers.  相似文献   
12.
Journal of Materials Science: Materials in Electronics - This study applied screen printed graphite electrode (SPGE) modified with the Fe2MoO4 magnetic nanocomposite for simultaneously determining...  相似文献   
13.
Ethylene glycol is an environmental pollutant, which exists in airport runoff and industrial waste. In this article, biodegradation of ethylene glycol in a two-chamber, batch-mode microbial fuel cell was investigated. Glucose and ethylene glycol at different concentrations were used as carbon and energy sources. Chemical oxygen demand removal in the range of 92–98% indicated that microbial fuel cell can be used for biodegradation of ethylene glycol. Ethylene glycol also improved power generation and the maximum power density was 5.72 mW/m2 (137.32 mW/m3), with respect to the same glucose and ethylene glycol concentrations (500 ppm).  相似文献   
14.
This paper discusses the studies carried out for the optimal production of enzyme l-asparaginase (l-asparagine amidohydrolase, EC 3.5.1.1) from Escherichia coli (ATCC 11303). It was found that inoculum age of 18 h and inoculum size of 10% were the most favorable operating conditions for enzyme production. Lactose, yeast extract and KH2PO4 were found to be the best carbon, nitrogen and ion sources, respectively. Statistical method was used to survey how various medium conditions affect the enzyme production. By response surface methodology, the values of lactose, tryptone, yeast extract, KH2PO4 and l-asparagine concentration were investigated to obtain the maximum enzyme activity. The highest enzyme activity, 1.03 U mL−1 enzyme, was determined under the following conditions: 1.08% lactose, 1.79% tryptone, 1.6% yeast extract, 2% KH2PO4 and 0.19% l-asparagine. Response surface methodology proved to be a powerful tool in optimizing the medium and by this method, more than 10-fold (from 0.1 to 1.03 U mL−1) enhancement in l-asparaginase activity was achieved as compared to that obtained in the basal medium (Luria-Bertani media, inoculum age of 24 h and inoculum size of 10%).  相似文献   
15.
As a result of noise and intensity non-uniformity,automatic segmentation of brain tissue in magnetic resonance imaging (MRI) is a challenging task.In this study a novel brain MRI segmentation approach is presented which employs Dempster-Shafer theory (DST) to perform information fusion.In the proposed method,fuzzy c-mean (FCM) is applied to separate features and then the outputs of FCM are interpreted as basic belief structures.The salient aspect of this paper is the interpretation of each FCM output as a belief structure with particular focal elements.The results of the proposed method are evaluated using Dice similarity and Accuracy indices.Qualitative and quantitative comparisons show that our method performs better and is more robust than the existing method.  相似文献   
16.
<正>ZnO nanoparticles are synthesized and applied as ethanol gas sensors.In some cases,the sensitivity and response time of these particles are shown to be higher than that has been reported in the literature.It has been investigated that the most possible reason for this higher gas sensing performance can be attributed to the quantity of the activity coefficient of its initial components.However,other effects such as pH and thermal decomposition are of importance as well.Specific ion interaction(SIT) model is applied to derive the mean activity coefficient values of the additives used in synthesis of ZnO nanoparticles.  相似文献   
17.
Maximum suction lift of water jet pumps   总被引:1,自引:0,他引:1  
This paper describes an experimental study on water jet pumps with different diameters and nozzle-to-throat area ratios. The results revealed that the area ratio was an important parameter to characterize the maximum suction lift of the jet pumps, while their diameters had a negligible effect. All jet pumps reached the cavitation regime at a suction lift of about 8 mH2O. In the non-cavitating region, it was found that the higher the area ratio, the higher the maximum suction lift for the same motive pressure head. However, the lower the area ratio, the higher the resistance to enter the cavitation regime. A dimensionless correlation was obtained for the non-cavitating region to describe the maximum suction lift as a function of a modified Thoma number and the area ratio. Curve fitting of experimental data also provided a dimensionless correlation to predict the onset of cavitation. Finally, applications of the results are presented.  相似文献   
18.
BACKGROUND: The bio‐oxidation of ferrous iron is a potential industrial process in the regeneration of ferric iron and the removal of H2S in combustible gases. Bio‐oxidation of ferrous iron may be an alternative method of producing ferric sulfate, which is a reagent used for removal of H2S from biogas, tail gas and in the pulp and paper industry. For practical use of this process, this study evaluated the optimal pH and initial ferric concentration. pH control looks like a key factor as it acts both on growth rate and on solubility of materials in the system. RESULTS: Process variables such as pH and amount of initial ferrous ions on oxidation by A. ferrooxidans and the effects of process variables dilution rate, initial concentrations of ferrous on oxidation of ferrous sulfate in the packed bed bioreactor were investigated. The optimum range of pH for the maximum growth of cells and effective bio‐oxidation of ferrous sulfate varied from 1.4 to 1.8. The maximum bio‐oxidation rate achieved was 0.3 g L?1 h?1 in a culture initially containing 19.5 g L?1 Fe2+ in the batch system. A maximum Fe2+ oxidation rate of 6.7 g L?1 h?1 was achieved at the dilution rate of 2 h?1, while no obvious precipitate was detected in the bioreactor. All experiments were carried out in shake flasks at 30 °C. CONCLUSION: The monolithic particles investigated in this study were found to be very suitable material for A. ferrooxidans immobilization for ferrous oxidation mainly because of its advantages over other commonly used substrates. In the monolithic bioreactor, the bio‐oxidation rate was 6.7 g L?1 h?1 and 7 g L?1 h?1 for 3.5 g L?1 and 6 g L?1 of initial ferrous concentration, respectively. For higher initial concentrations 16 g L?1 and 21.3 g L?1, bio‐oxidation rate were 0.9 g L?1 h?1 and 0.55 g L?1 h?1, respectively. Copyright © 2008 Society of Chemical Industry  相似文献   
19.
This study is focused on the effects of electroslag remelting by prefused slag(CaO,Al2O3,and CaF2)on macrostructure and reduction of inclusions in the medical grade of 316LC(316LVM)stainless steel.Analysis of the obtained results indicated that for production of a uniform ingot structure during electroslag remelting, shape and depth of the molten pool should be carefully controlled.High melting rates led to deeper pool depth and interior radial solidification characteristics,while decrease in the melting ra...  相似文献   
20.
BACKGROUND: To meet stringent emission standards stipulated by regulatory agencies, the oil industry is required to bring down the sulfur content in fuels. As some compounds cannot be desulfurized by existing desulfurizing processes (such as hydrodesulfurization, HDS) biodesulfurization has become an interesting topic for researchers. Most of the isolated biodesulfurizing microorganisms are capable of desulfurization of refined products whose predominant sulfur species are dibenzothiophenes so biocatalyst development is still needed to desulfurize the spectrum of sulfur‐bearing compounds present in whole crude. RESULTS: The first desulfurizing bacterium active at 60 °C has been isolated, which reduces DBT concentration from 2 mmol L?1 to 0.1 mmol L?1 after 95 h, following the 4S pathway. Its DBT desulfurization pattern was represented by the Michaelis‐Menten equation. Various parameters such as Vmax, Km, µm, Ks and maximum specific DBT desulfurization rate were calculated which are 0.092 mmol L?1 h?1, 3.554 mmol L?1, 0.157 h?1, 3.722 mmol L?1 and 0.192 mmol L?1 DBT g?1 DCW (dry cell weight) h?1, respectively. It can desulfurize 50% of the sulfur content of Kuhemond heavy crude oil (KHC oil) with an initial sulfur content of 7.6%wt in 6 days. Its maximum specific desulfurization rate for KHC oil is equivalent to 0.005 g sulfur g?1 DCW h?1. The bacterium was isolated during a heavy crude oil biodesulfurization project initiated by PEDEC, a subsidiary of National Iranian Oil Company. CONCLUSION: The KHC oil sulfur removal efficiency of the bacterium is approximately five times that of BBRC‐9016 bacterium. It removes sulfur selectively without using sulfur‐containing compounds as its carbon source. By applying various media during its isolation, the probability of screening the correct microorganism is increased. Copyright © 2008 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号