首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1031篇
  免费   47篇
  国内免费   5篇
电工技术   10篇
综合类   4篇
化学工业   532篇
金属工艺   14篇
机械仪表   27篇
建筑科学   31篇
矿业工程   4篇
能源动力   28篇
轻工业   65篇
水利工程   3篇
石油天然气   10篇
武器工业   2篇
无线电   28篇
一般工业技术   192篇
冶金工业   52篇
原子能技术   3篇
自动化技术   78篇
  2023年   16篇
  2022年   166篇
  2021年   101篇
  2020年   34篇
  2019年   25篇
  2018年   46篇
  2017年   36篇
  2016年   44篇
  2015年   25篇
  2014年   40篇
  2013年   57篇
  2012年   56篇
  2011年   73篇
  2010年   42篇
  2009年   53篇
  2008年   46篇
  2007年   33篇
  2006年   24篇
  2005年   31篇
  2004年   17篇
  2003年   19篇
  2002年   29篇
  2001年   12篇
  2000年   11篇
  1999年   7篇
  1998年   5篇
  1997年   5篇
  1996年   2篇
  1995年   7篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1979年   2篇
排序方式: 共有1083条查询结果,搜索用时 15 毫秒
91.
Without a doubt, a majority of diseases are food-pattern-related. However, one disease stands out as an increasingly more common autoimmune-mediated enteropathy triggered by the ingestion of gluten. Celiac disease (CD) is an old disease, with changing clinical patterns, affecting any age, including infancy and adolescence, and becoming more frequent among the elderly. The gluten-free diet (GFD) has been the sole provider of clinical, serological, and histological improvement for patients with CD for more than seven decades. Nowadays, complete avoidance of dietary gluten is rarely possible because of the wide availability of wheat and other processed foods that contain even more gluten, to the detriment of gluten-free products. Undeniably, there is a definite need for replacing the burdensome GFD. An add-on therapy that could control the dietary transgressions and inadvertent gluten consumption that can possibly lead to overt CD should be considered while on GFD. Nevertheless, future drugs should be able to provide patients some freedom to self-manage CD and increase food independence, while actively reducing exposure and mucosal damage and alleviating GI symptoms. Numerous clinical trials assessing different molecules have already been performed with favorable outcomes, and hopefully they will soon be available for patient use.  相似文献   
92.
A decrease in the miR-124 expression was observed in various epithelial cancers. Like a classical suppressor, miR-124 can inhibit the translation of multiple oncogenic proteins. Epigenetic mechanisms play a significant role in the regulation of miR-124 expression and involve hypermethylation of the MIR-124-1/-2/-3 genes and the effects of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) according to the model of competing endogenous RNAs (ceRNAs). More than 40 interactomes (lncRNA/miR-124/mRNA) based on competition between lncRNAs and mRNAs for miR-124 binding have been identified in various epithelial cancers. LncRNAs MALAT1, NEAT1, HOXA11-AS, and XIST are the most represented in these axes. Fourteen axes (e.g., SND1-IT1/miR-124/COL4A1) are involved in EMT and/or metastasis. Moreover, eight axes (e.g., OIP5-AS1/miR-124-5p/IDH2) are involved in key pathways, such as Wnt/b-catenin, E2F1, TGF-β, SMAD, ERK/MAPK, HIF-1α, Notch, PI3K/Akt signaling, and cancer cell stemness. Additionally, 15 axes impaired patient survival and three axes reduced chemo- or radiosensitivity. To date, 14 cases of miR-124 regulation by circRNAs have been identified. Half of them involve circHIPK3, which belongs to the exonic ecircRNAs and stimulates cell proliferation, EMT, autophagy, angiogenesis, and multidrug resistance. Thus, miR-124 and its interacting partners may be considered promising targets for cancer therapy.  相似文献   
93.
FLIM (Fluorescence Lifetime Imaging Microscopy) is a powerful tool that could be used in the future to diagnose islet cell recovery after therapy. The identification of appropriate FLIM parameters is required to determine islet quality and islet cell metabolism throughout the organ under various conditions of insulin deficiency. The aim of the work was to identify key FLIM parameters, changes of which are characteristic of pancreatic pathologies. The τm, τ1, τ2, α1, α2 and α1/α2 of free and bound forms of NAD(P)H of the islet cells of animals (rats and pigs) and of humans with and without pathologies were measured and analyzed. The data were confirmed by IHC and histological studies. We identified three FLIM parameters in islet cells from animals with streptozotocin (STZ)-induced diabetes mellitus (DM) and from humans with chronic pancreatitis + type 2 diabetes (T2D), which differ in the same way: τm and α2 take lower values compared to the nonpathological islet cells, while α1/α2 takes higher values. In islet cells from patients with adenocarcinoma (PDAC) and chronic pancreatitis, these parameters had reverse tendency relative to the norm or did not differ. Thus, minimally invasive and non-contrast FLIM methods may, in the future, be used to diagnose pathological islet cells.  相似文献   
94.
Surfactants have a widespread occurrence, not only as household detergents, but also in their application in industry and medicine. There are numerous bioassays for assessing surfactant toxicity, but investigations of their impact on biological systems at the molecular level are still needed. In this paper, luminous marine bacteria and their coupled NAD(P)H:FMN-oxidoreductase + luciferase (Red + Luc) enzyme system was applied to examine the effects of different types of surfactants, including cationic cetyltrimethylammonium bromide (CTAB), non-ionic polyoxyethylene 20 sorbitan monooleate (Tween 80) and anionic sodium lauryl sulfate (SLS), and to assess whether the Red + Luc enzyme system can be used as a more sensitive indicator of toxicity. It was shown that the greatest inhibitory effect of the surfactants on the activity of luminous bacteria and the Red + Luc enzyme system was in the presence of SLS samples. The calculated IC50 and EC50 values of SLS were 10−5 M and 10−2 M for the enzymatic and cellular assay systems, respectively. The results highlight the benefits of using the enzymatic assay system in ecotoxicology as a tool for revealing surfactant effects on intracellular proteins if the cellular membrane is damaged under a long-term exposure period in the presence of the surfactants. For this purpose, the bioluminescent enzyme-inhibition-based assay could be used as an advanced research tool for the evaluation of surfactant toxicity at the molecular level of living organisms due to its technical simplicity and rapid response time.  相似文献   
95.
The temporomandibular joint (TMJ) is a specialized synovial joint that is crucial for the movement and function of the jaw. TMJ osteoarthritis (TMJ OA) is the result of disc dislocation, trauma, functional overburden, and developmental anomalies. TMJ OA affects all joint structures, including the articular cartilage, synovium, subchondral bone, capsule, ligaments, periarticular muscles, and sensory nerves that innervate the tissues. The present review aimed to illustrate the main pathomechanisms involving cartilage and bone changes in TMJ OA and some therapeutic options that have shown potential restorative properties regarding these joint structures in vivo. Chondrocyte loss, extracellular matrix (ECM) degradation, and subchondral bone remodeling are important factors in TMJ OA. The subchondral bone actively participates in TMJ OA through an abnormal bone remodeling initially characterized by a loss of bone mass, followed by reparative mechanisms that lead to stiffness and thickening of the condylar osteochondral interface. In recent years, such therapies as intraarticular platelet-rich plasma (PRP), hyaluronic acid (HA), and mesenchymal stem cell-based treatment (MSCs) have shown promising results with respect to the regeneration of joint structures or the protection against further damage in TMJ OA. Nevertheless, PRP and MSCs are more frequently associated with cartilage and/or bone repair than HA. According to recent findings, the latter could enhance the restorative potential of other therapies (PRP, MSCs) when used in combination, rather than repair TMJ structures by itself. TMJ OA is a complex disease in which degenerative changes in the cartilage and bone develop through intricate mechanisms. The regenerative potential of such therapies as PRP, MSCs, and HA regarding the cartilage and subchondral bone (alone or in various combinations) in TMJ OA remains a matter of further research, with studies sometimes obtaining discrepant results.  相似文献   
96.
Human pluripotent stem cells are promising for a wide range of research and therapeutic purposes. Their maintenance in culture requires the deep control of their pluripotent and clonal status. A non-invasive method for such control involves day-to-day observation of the morphological changes, along with imaging colonies, with the subsequent automatic assessment of colony phenotype using image analysis by machine learning methods. We developed a classifier using a convolutional neural network and applied it to discriminate between images of human embryonic stem cell (hESC) colonies with “good” and “bad” morphological phenotypes associated with a high and low potential for pluripotency and clonality maintenance, respectively. The training dataset included the phase-contrast images of hESC line H9, in which the morphological phenotype of each colony was assessed through visual analysis. The classifier showed a high level of accuracy (89%) in phenotype prediction. By training the classifier on cropped images of various sizes, we showed that the spatial scale of ~144 μm was the most informative in terms of classification quality, which was an intermediate size between the characteristic diameters of a single cell (~15 μm) and the entire colony (~540 μm). We additionally performed a proteomic analysis of several H9 cell samples used in the computational analysis and showed that cells of different phenotypes differentiated at the molecular level. Our results indicated that the proposed approach could be used as an effective method of non-invasive automated analysis to identify undesirable developmental anomalies during the propagation of pluripotent stem cells.  相似文献   
97.
Acinetobacter baumannii is a dangerous hospital pathogen primarily due to its ability to form biofilms on different abiotic and biotic surfaces. The present study investigated the effect of riboflavin- and chlorophyllin-based antimicrobial photodynamic therapy, performed with near-ultraviolet or blue light on the viability of bacterial cells in biofilms and their structural stability, also determining the extent of photoinduced generation of intracellular reactive oxygen species as well as the ability of A. baumannii to form biofilms after the treatment. The efficacy of antimicrobial photodynamic therapy was compared with that of light alone and the role of the photosensitizer type on the photosensitization mechanism was demonstrated. We found that the antibacterial effect of riboflavin-based antimicrobial photodynamic therapy depends on the ability of photoactivated riboflavin to generate intracellular reactive oxygen species but does not depend on the concentration of riboflavin and pre-incubation time before irradiation. Moreover, our results suggest a clear interconnection between the inactivation efficiency of chlorophyllin-based antimicrobial photodynamic therapy and the sensitivity of A. baumannii biofilms to used light. In summary, all the analyzed results suggest that riboflavin-based antimicrobial photodynamic therapy and chlorophyllin-based antimicrobial photodynamic therapy have the potential to be applied as an antibacterial treatment against A. baumannii biofilms or as a preventive measure against biofilm formation.  相似文献   
98.
Muscle unloading leads to signaling alterations that cause muscle atrophy and weakness. The cellular energy sensor AMPK can regulate myofiber-type shift, calcium-dependent signaling and ubiquitin-proteasome system markers. We hypothesized that the prevention of p-AMPK downregulation during the first week of muscle unloading would impede atrophy development and the slow-to-fast shift of soleus muscle fibers, and the aim of the study was to test this hypothesis. Thirty-two male Wistar rats were randomly assigned to four groups: placebo control (C), control rats treated with metformin (C + M), 7 days of hindlimb suspension (HS) + placebo (7HS), and 7 days of HS + metformin administration (7HS + M). In the soleus of the 7HS rats, we detected a slow-to-fast fiber-type shift as well as a significant downregulation of MEF-2D and p300 in the nuclei. In the 7HS group, we also found decreases in p-ACC (AMPK target) protein level and in the expression of E3 ubiquitin ligases and p-CaMK II protein level vs. the C group. The 7-day metformin treatment for soleus muscle unloading (1) prevented slow-to-fast fiber-type shift; (2) counteracted changes in the p-ACC protein level; (3) hindered changes in the nuclear protein level of the slow myosin expression activators MEF-2D and p300, but did not affect NFATc1 signaling; and (4) attenuated the unloading-induced upregulation of MuRF-1, atrogin-1, ubiquitin and myostatin mRNA expression, but did not prevent soleus muscle atrophy. Thus, metformin treatment during muscle disuse could be useful to prevent the decrease in the percentage of slow-type fatigue-resistant muscle fibers.  相似文献   
99.
The potential of chitosan and carboxymethyl chitosan (CMC) cryogels cross-linked with diglycidyl ether of 1,4-butandiol (BDDGE) and poly(ethylene glycol) (PEGDGE) have been compared in terms of 3D culturing HEK-293T cell line and preventing the bacterial colonization of the scaffolds. The first attempts to apply cryogels for the 3D co-culturing of bacteria and human cells have been undertaken toward the development of new models of host–pathogen interactions and bioimplant-associated infections. Using a combination of scanning electron microscopy, confocal laser scanning microscopy, and flow cytometry, we have demonstrated that CMC cryogels provided microenvironment stimulating cell–cell interactions and the growth of tightly packed multicellular spheroids, while cell–substrate interactions dominated in both chitosan cryogels, despite a significant difference in swelling capacities and Young’s modulus of BDDGE- and PEGDGE-cross-linked scaffolds. Chitosan cryogels demonstrated only mild antimicrobial properties against Pseudomonas fluorescence, and could not prevent the formation of Staphylococcus aureus biofilm in DMEM media. CMC cryogels were more efficient in preventing the adhesion and colonization of both P. fluorescence and S. aureus on the surface, demonstrating antifouling properties rather than the ability to kill bacteria. The application of CMC cryogels to 3D co-culture HEK-293T spheroids with P. fluorescence revealed a higher resistance of human cells to bacterial toxins than in the 2D co-culture.  相似文献   
100.
Cytochrome P450 3A4 (CYP3A4) is a major human drug-metabolizing enzyme, notoriously known for its extreme substrate promiscuity, allosteric behavior, and implications in drug–drug interactions. Despite extensive investigations, the mechanism of ligand binding to CYP3A4 is not fully understood. We determined the crystal structure of CYP3A4 complexed with fluorol, a small fluorescent dye that can undergo hydroxylation. In the structure, fluorol associates to the substrate channel, well suited for the binding of planar polyaromatic molecules bearing polar groups, through which stabilizing H-bonds with the polar channel residues, such as Thr224 and Arg372, can be established. Mutagenesis, spectral, kinetic, and functional data confirmed the involvement but not strict requirement of Thr224 for the association of fluorol. Collectively, our data identify the substrate channel as a high-affinity ligand binding site and support the notion that hydrophobic ligands first dock to the nearby peripheral surface, before migrating to the channel and, subsequently, into the active site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号