首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2670篇
  免费   132篇
  国内免费   12篇
电工技术   28篇
化学工业   811篇
金属工艺   56篇
机械仪表   80篇
建筑科学   91篇
矿业工程   21篇
能源动力   85篇
轻工业   194篇
水利工程   18篇
石油天然气   8篇
武器工业   1篇
无线电   220篇
一般工业技术   521篇
冶金工业   158篇
原子能技术   33篇
自动化技术   489篇
  2023年   31篇
  2022年   121篇
  2021年   116篇
  2020年   86篇
  2019年   65篇
  2018年   97篇
  2017年   100篇
  2016年   97篇
  2015年   92篇
  2014年   128篇
  2013年   207篇
  2012年   154篇
  2011年   179篇
  2010年   132篇
  2009年   124篇
  2008年   134篇
  2007年   102篇
  2006年   89篇
  2005年   82篇
  2004年   59篇
  2003年   56篇
  2002年   48篇
  2001年   30篇
  2000年   28篇
  1999年   28篇
  1998年   39篇
  1997年   23篇
  1996年   18篇
  1995年   25篇
  1994年   24篇
  1993年   22篇
  1992年   15篇
  1991年   16篇
  1990年   11篇
  1989年   13篇
  1988年   11篇
  1987年   24篇
  1986年   15篇
  1985年   15篇
  1984年   13篇
  1983年   9篇
  1982年   16篇
  1981年   10篇
  1980年   8篇
  1979年   11篇
  1976年   7篇
  1975年   9篇
  1974年   7篇
  1973年   13篇
  1972年   8篇
排序方式: 共有2814条查询结果,搜索用时 15 毫秒
991.
Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain–machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m?1, stretchability of 800%, and tissue‐like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in‐scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in‐scaffold polymerized poly(ethylene‐3,4‐diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue‐mimetic neurostimulating electrodes.  相似文献   
992.
We show that aqueous dispersions of single-walled carbon nanotubes (SWNTs), prepared with the aid of nucleic acids (NAs) such as RNA or DNA, can be separated into fractions using agarose gel electrophoresis. In a DC electric field, SWNT/NA complexes migrate in the gel in the direction of positive potential to form well-defined bands. Raman spectroscopy as a function of band position shows that nanotubes having different spectroscopic properties possess different electrophoretic mobilities. The migration patterns for SWNT/RNA and SWNT/DNA complexes differ. Parallel elution of the SWNT/NA complexes from the gel during electrophoresis and subsequent characterization by AFM reveals differences in nanotube diameter, length and curvature. The results suggest that fractionation of nanotubes can be achieved by this procedure. We discuss factors affecting the mobility of the nanotube complexes and propose analytical applications of this technique.  相似文献   
993.
For measurements of the surface tension the oscillating drop technique is employed. With the help of digital image processing this method yields the frequencies of the surface oscillations from which the values of the surface tension can be derived. In the framework of ESA’s Thermolab project, the surface tensions of two representative steels: one low carbon steel, and one stainless steel, have been determined over a wide temperature range. The measurements were carried out in an earthbound levitation device, as well as during parabolic flights in the TEMPUS facility, taking advantage of the microgravity environment. The results obtained are compared and discussed in the framework of thermodynamic models.  相似文献   
994.
Over the last decade, we have witnessed an increased recognition of the importance of 3D culture models to study various aspects of cell physiology and pathology, as well as to engineer implantable tissues. As compared to well-established 2D cell-culture systems, cell/tissue culture within 3D porous biomaterials has introduced new scientific and technical challenges associated with complex transport phenomena, physical forces, and cell-microenvironment interactions. While bioreactor-based 3D model systems have begun to play a crucial role in addressing fundamental scientific questions, numerous hurdles currently impede the most efficient utilization of these systems. We describe how computational modeling and innovative sensor technologies, in conjunction with well-defined and controlled bioreactor-based 3D culture systems, will be key to gain further insight into cell behavior and the complexity of tissue development. These model systems will lay a solid foundation to further develop, optimize, and effectively streamline the essential bioprocesses to safely and reproducibly produce appropriately scaled tissue grafts for clinical studies.  相似文献   
995.
Nuclear magnetic resonance is viewed as an important technique for the implementation of many quantum information algorithms and protocols. Although the most straightforward approach is to use the two-level system composed of spin 1/2 nuclei as qubits, quadrupolar nuclei, which possess a spin greater than 1/2, are being used as an alternative. In this study, we show some unique features of quadrupolar systems for quantum information processing, with an emphasis on the ability to execute efficient quantum state tomography (QST) using only global rotations of the spin system, whose performance is shown in detail. By preparing suitable states and implementing logical operations by numerically optimized pulses together with the QST method, we follow the stepwise execution of Grover's algorithm. We also review some work in the literature concerning the relaxation of pseudo-pure states in spin 3/2 systems as well as its modelling in both the Redfield and Kraus formalisms. These data are used to discuss differences in the behaviour of the quantum correlations observed for two-qubit systems implemented by spin 1/2 and quadrupolar spin 3/2 systems, also presented in the literature. The possibilities and advantages of using nuclear quadrupole resonance experiments for quantum information processing are also discussed.  相似文献   
996.
Molecular dynamics (MD) simulations of aluminum oxide material and the aluminum oxidation process require a sufficiently sophisticated and well-calibrated potential, one that takes into account locally varying Al/O ratios and adaptive charge transfer between Al and O atoms. In this work we show that the Charge Transfer Ionic Potential (CTIP) by Zhou et al. [X.W. Zhou, H.N.G. Wadley, J.-S. Filhol, M.N. Neurock, Phys. Rev. B 69 (2004) 035402] in combination with a new, “Reference Free” version of the Modified Embedded Atom Method (RFMEAM) potential performs well for this purpose. This new potential has been parameterized by systematically fitting it to a large database of different AlxOy crystal energies, over a range of lattice constants and elastic deformations, using a recent method which separates the electrostatic and non-electrostatic fitting steps. The resulting potential yields more realistic atomic charges, crystal energies and lattice constants than earlier potentials. In particular, we show that the angular forces in the MEAM part are essential for α-Al2O3 to be the lowest-energy aluminum oxide. We compare the performance of our potential with the potential of Zhou et al., which lacks angular forces and was parameterized using a less involved fitting procedure, and show the results of a few molecular dynamics simulations. The two-step fitting method is generally applicable and can be adopted for constructing potentials for other metal-oxide systems.  相似文献   
997.
Ptychographic coherent X‐ray imaging is applied to obtain a projection of the electron density of colloidal crystals, which are promising nanoscale materials for optoelectronic applications and important model systems. Using the incident X‐ray wavefield reconstructed by mixed states approach, a high resolution and high contrast image of the colloidal crystal structure is obtained by ptychography. The reconstructed colloidal crystal reveals domain structure with an average domain size of about 2 µm. Comparison of the domains formed by the basic close‐packed structures, allows us to conclude on the absence of pure hexagonal close‐packed domains and confirms the presence of random hexagonal close‐packed layers with predominantly face‐centered cubic structure within the analyzed part of the colloidal crystal film. The ptychography reconstruction shows that the final structure is complicated and may contain partial dislocations leading to a variation of the stacking sequence in the lateral direction. As such in this work, X‐ray ptychography is extended to high resolution imaging of crystalline samples.  相似文献   
998.
ABSTRACT

Conventional and composed promethazine-loaded microspheres were prepared by spray drying of chitosan solution systems and double water-in-oil-in-water (W/O/W) emulsion systems, respectively. Double emulsions were prepared in two different feed concentrations, with chitosan dissolved in both water phases, and ethylcellulose dissolved in oil phase. Swelling and bioadhesive properties of the microspheres depended on the chitosan content, type and the feed concentration of spray-dried system. Results obtained suggested that better ethylcellulose microcapsules with promethazine in the chitosan matrix were formed when less concentrated emulsion systems were spray-dried. Thus, in case of such a system, with ethylcellulose/chitosan weight ratio of 1:2, prolonged promethazine release was obtained.  相似文献   
999.
A 13-year study of tritium transport through a field-scale earthen liner was conducted by the Illinois State Geological Survey to determine the long-term performance of compacted soil liners in limiting chemical transport. Two field-sampling procedures (pressure-vacuum lysimeter and core sampling) were used to determine the vertical tritium concentration profiles at different times and locations within the liner. Profiles determined by the two methods were similar and consistent. Analyses of the concentration profiles showed that the tritium concentration was relatively uniformly distributed horizontally at each sampling depth within the liner and thus there was no apparent preferential transport. A simple one-dimensional analytical solution to the advective–dispersive solute transport equation was used to model tritium transport through the liner. Modeling results showed that diffusion was the dominant contaminant transport mechanism. The measured tritium concentration profiles were accurately modeled with an effective diffusion coefficient of 6×10?4?mm2/s, which is in the middle of the range of values reported in the literature.  相似文献   
1000.
Comparison among commonly used reference evapotranspiration (ET) equations in the United States and the recently recommended ASCE standardized reference ET equation was made as part of the ASCE standardization effort. Analyses used hourly and daily weather data from 49 geographically diverse sites in the United States. Calculations were performed for both grass and alfalfa reference crops in a consistent manner, using weather data that passed integrity and quality assessment checks. Comparisons were made between reference ET computed by the various methods and the ASCE Penman-Monteith (PM) equation used for a daily calculation time step. In addition, calculations using hourly time steps and summed daily were compared with daily calculations for the same method as well as against the ASCE-PM method. Results showed that the ASCE standardized equation agreed best with the full form of ASCE-PM. The results provide a basis for objectively assessing the relative performance of reference ET equations in a variety of climates and support adoption of a standardized equation as recommended by the ASCE Task Committee.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号