首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   8篇
电工技术   2篇
化学工业   27篇
机械仪表   2篇
建筑科学   8篇
能源动力   5篇
轻工业   69篇
石油天然气   1篇
无线电   5篇
一般工业技术   17篇
冶金工业   17篇
原子能技术   1篇
自动化技术   9篇
  2023年   4篇
  2022年   8篇
  2021年   1篇
  2020年   7篇
  2019年   3篇
  2018年   7篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   10篇
  2013年   10篇
  2012年   8篇
  2011年   15篇
  2010年   4篇
  2009年   11篇
  2008年   12篇
  2007年   10篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1985年   1篇
  1983年   1篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
排序方式: 共有163条查询结果,搜索用时 4 毫秒
41.
Both genetic and environmental factors create significant variation in the amount and quality of maize landrace constituents. Details on the flours and starch characteristics have not been fully investigated. The physicochemical, pasting and thermal properties of 8 promising cultivars were assessed in this study and those properties were correlated. Higher values of swelling and solubility (RJ – 13.14%; 14.39%), lipid content (MG – 5.53%), WBC (PR – 18.89%), and amylose content (PR – 27.43%) were found for those genotypes. Lower onset temperatures of gelatinization (To) were observed for RX-F1 (66.1 °C) as RX-F1 (68.7 °C) genotype showed the lower pasting temperatures. A wide range of viscosity values was found among the maize landraces (MG-F0, 343 mPa s and RJ-F1, 175 mPa s) as well as for the retrogradation (R8C-F1, 796 mPa s and RX-F1, 22 mPa s). ATR-FTIR spectroscopy revealed amylose, amylopectin, lipids, and proteins as major flours constituents and their differences were discriminated by PCA analysis.  相似文献   
42.
Sediment extracts from three polluted sites of the river Elbe basin were fractionated using a novel online fractionation procedure. Resulting fractions were screened for mutagenic, aryl hydrocarbon receptor (AhR)-mediated, transthyretin (TTR)-binding, and estrogenic activities and their potency to inhibit gap junctional intercellular communication (GJIC) to compare toxicity patterns and identify priority fractions. Additionally, more than 200 compounds and compound classes were identified using GC-MS/MS, LC-MS/MS, and HPLC-DAD methods. For all investigated end points, major activities were found in polar fractions, which are defined here as fractions containing dominantly compounds with at least one polar functional group. Nonpolar PAH fractions contributed to mutagenic and AhR-mediated activities while inhibition of GJIC and estrogenic and TTR-binding activities were exclusively observed in the polar fractions. Known mutagens in polar fractions included nitro- and dinitro-PAHs, azaarenes, and keto-PAHs, while parent and monomethylated PAHs such as benzo[a]pyrene and benzofluoranthenes were identified in nonpolar fractions. Additionally, for one sample, high AhR-mediated activities were determined in one fraction characterized by PCDD/Fs, PCBs, and PCNs. Estrone, 17β-estradiol, 9H-benz[de]anthracen-7-one, and 4-nonylphenol were identified as possible estrogenic and TTR-binding compounds. Thus, not only nonpolar compounds such as PAHs, PCBs, and PCDD/Fs but also the less characterized and investigated more polar substances should be considered as potent mutagenic, estrogenic, AhR-inducing, TTR-binding, and GJIC-inhibiting components for future studies.  相似文献   
43.
44.
Interest in tumor cell mitochondria as a pharmacological target has been rekindled in recent years. This attention is due in part to new publications documenting heterogenous characteristics of solid tumors, including anoxic and hypoxic zones that foster cellular populations with differentiating metabolic characteristics. These populations include tumor-initiating or cancer stem cells, which have a strong capacity to adapt to reduced oxygen availability, switching rapidly between glycolysis and oxidative phosphorylation as sources of energy and metabolites. Additionally, this cell subpopulation shows high chemo- and radioresistance and a high capacity for tumor repopulation. Interestingly, it has been shown that inhibiting mitochondrial function in tumor cells affects glycolysis pathways, cell bioenergy, and cell viability. Therefore, mitochondrial inhibition may be a viable strategy for eradicating cancer stem cells. In this context, medicinal chemistry research over the last decade has synthesized and characterized “vehicles” capable of transporting novel or existing pharmacophores to mitochondrial tumor cells, based on mechanisms that exploit the physicochemical properties of the vehicles and the inherent properties of the mitochondria. The pharmacophores, some of which have been isolated from plants and others, which were synthesized in the lab, are diverse in chemical nature. Some of these molecules are active, while others are prodrugs that have been evaluated alone or linked to mitochondria-targeted agents. Finally, researchers have recently described drugs with well-proven safety and efficacy that may exert a mitochondria-specific inhibitory effect in tumor cells through noncanonical mechanisms. The effectiveness of these molecules may be improved by linking them to mitochondrial carrier molecules. These promising pharmacological agents should be evaluated alone and in combination with classic chemotherapeutic drugs in clinical studies.  相似文献   
45.
46.
Particulate matter (PM) pollution is responsible for hundreds of thousands of deaths worldwide, the majority due to cardiovascular disease (CVD). While many potential pathophysiological mechanisms have been proposed, there is not yet a consensus as to which are most important in causing pollution-related morbidity/mortality. Nor is there consensus regarding which specific types of PM are most likely to affect public health in this regard. One toxicological mechanism linking exposure to airborne PM with CVD outcomes is oxidative stress, a contributor to the development of CVD risk factors including atherosclerosis. Recent work suggests that accelerated shortening of telomeres and, thus, early senescence of cells may be an important pathway by which oxidative stress may accelerate biological aging and the resultant development of age-related morbidity. This pathway may explain a significant proportion of PM-related adverse health outcomes, since shortened telomeres accelerate the progression of many diseases. There is limited but consistent evidence that vehicular emissions produce oxidative stress in humans. Given that oxidative stress is associated with accelerated erosion of telomeres, and that shortened telomeres are linked with acceleration of biological ageing and greater incidence of various age-related pathology, including CVD, it is hypothesized that associations noted between certain pollution types and sources and oxidative stress may reflect a mechanism by which these pollutants result in CVD-related morbidity and mortality, namely accelerated aging via enhanced erosion of telomeres. This paper reviews the literature providing links among oxidative stress, accelerated erosion of telomeres, CVD, and specific sources and types of air pollutants. If certain PM species/sources might be responsible for adverse health outcomes via the proposed mechanism, perhaps the pathway to reducing mortality/morbidity from PM would become clearer. Not only would pollution reduction imperatives be more focused, but interventions which could reduce oxidative stress would become all the more important.  相似文献   
47.
Atopic dermatitis (AD) is a common T-helper 2 (Th2) lymphocyte-mediated chronic inflammatory skin disease characterized by disturbed epidermal differentiation (e.g., filaggrin (FLG) expression) and diminished skin barrier function. Therapeutics targeting the aryl hydrocarbon receptor (AHR), such as coal tar and tapinarof, are effective in AD, yet new receptor ligands with improved potency or bioavailability are in demand to expand the AHR-targeting therapeutic arsenal. We found that carboxamide derivatives from laquinimod, tasquinimod, and roquinimex can activate AHR signaling at low nanomolar concentrations. Tasquinimod derivative (IMA-06504) and its prodrug (IMA-07101) provided full agonist activity and were most effective to induce FLG and other epidermal differentiation proteins, and counteracted IL-4 mediated repression of terminal differentiation. Partial agonist activity by other derivatives was less efficacious. The previously reported beneficial safety profile of these novel small molecules, and the herein reported therapeutic potential of specific carboxamide derivatives, provides a solid rationale for further preclinical assertation.  相似文献   
48.
In this study, Nuclear Magnetic Resonance (NMR), a non-destructive measurement technique, has been applied for investigation of iron turn-over processes. In non-invasive laboratory experiments, iron dissolution and precipitation reactions in saturated natural sands were observed spatially and temporally. These processes play an important role in groundwater with varying redox and pH conditions. Redox reactions turning Fe2+ into Fe3+ and Fe3+ into Fe2+ were detected in aqueous solution by the difference in magnetic relaxation times. Furthermore, the spatial distribution of the iron reduction reaction, the consumption and diffusive transfer to and from the reaction sites, was observed in a 1D set-up with natural sands. The achieved spatial resolution was less than one millimetre while repeating measurements every half an hour. It showed the system changing from diffusion-limited to reaction-limited.  相似文献   
49.
Human milk is seen not only as a food, but as a functional and dynamic biologic system. It provides nutrients, bioactive components, and immune factors, promoting adequate and healthy growth of newborn infants. When mothers cannot supply their children, donated breast milk is the nutrition recommended by the World Health Organization, as it is a better alternative than infant formula. However, because of the manner in which donor milk is handled in human milk banks (HMB) many of the properties ascribed to mother's own milk are diminished or destroyed. The major process responsible for these losses is Holder pasteurization. High-pressure processing (HPP) is a novel nonthermal pasteurization technology that is being increasingly applied in food industries worldwide, primarily as an alternative to thermal treatment. This is due to its capacity to inactivate microorganisms while preserving both nutritional and bioactive components of foods. This review describes human milk composition and preservation, and critically discusses HMB importance and practices, highlighting HPP as a potential nonthermal pasteurization technology for human milk preservation. HPP technology is described and the few currently existing studies of its effects in human milk are presented.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号