首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25539篇
  免费   1535篇
  国内免费   61篇
电工技术   343篇
综合类   31篇
化学工业   6014篇
金属工艺   998篇
机械仪表   1573篇
建筑科学   508篇
矿业工程   9篇
能源动力   1043篇
轻工业   2103篇
水利工程   96篇
石油天然气   17篇
无线电   4240篇
一般工业技术   5450篇
冶金工业   1649篇
原子能技术   337篇
自动化技术   2724篇
  2024年   23篇
  2023年   308篇
  2022年   450篇
  2021年   795篇
  2020年   569篇
  2019年   618篇
  2018年   817篇
  2017年   784篇
  2016年   908篇
  2015年   749篇
  2014年   1109篇
  2013年   1633篇
  2012年   1749篇
  2011年   2117篇
  2010年   1523篇
  2009年   1530篇
  2008年   1424篇
  2007年   1092篇
  2006年   958篇
  2005年   839篇
  2004年   755篇
  2003年   714篇
  2002年   695篇
  2001年   600篇
  2000年   496篇
  1999年   494篇
  1998年   774篇
  1997年   473篇
  1996年   442篇
  1995年   298篇
  1994年   191篇
  1993年   168篇
  1992年   130篇
  1991年   116篇
  1990年   97篇
  1989年   108篇
  1988年   85篇
  1987年   74篇
  1986年   57篇
  1985年   55篇
  1984年   42篇
  1983年   33篇
  1982年   34篇
  1981年   30篇
  1980年   33篇
  1979年   15篇
  1977年   26篇
  1976年   34篇
  1975年   17篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
ABSTRACT: Noble-metal nanostructure allows us to tune optical and electrical properties, which has high utility for real-world application. We studied surface plasmon induced emission of semiconductor quantum dots (QDs) on engineered metallic nanostructures. Highly passive organic ZnS capped CdSe QDs were spin coated on poly-(methyl methacrylate) (PMMA) covered Ag films which brought QDs near to metallic surface. We obtained the enhanced electromagnetic field and reduced fluorescence lifetimes from CdSe/ZnS quantum dots (QDs) due to the strong coupling of emitters wave function with the Ag plasmon resonance. Observed changes include a six-fold increase in the fluorescence intensity and striking reduction in fluorescence lifetimes of CdSe/ZnS QDs on rough Ag nanoneedle compared to the case of smooth surfaces. The advantages of using those nanocomposites are expected for high efficiency light-emitting diodes, platform fabrication of biological and environmental monitoring, and high contrast imaging.  相似文献   
992.
ABSTRACT: BACKGROUND: The 5-year survival rate for breast cancer among Korean women has increased steadily; however, breast cancer remains the leading cause of cancer mortality among women. One-carbon metabolism, which requires an adequate supply of methyl group donors and B vitamins, may affect the prognosis of breast cancer. This aim of this study was to investigate the associations of dietary intake of vitamin B2, vitamin B6 and folate before diagnosis on the prognosis of breast cancer. METHODS: We assessed the dietary intake using a food frequency questionnaire with 980 women who were newly diagnosed and histopathologically confirmed to have primary breast cancer from hospitals in Korea, and 141 disease progression events occurred. Cox's proportional hazard regression models were used to estimate the hazard ratio (HR) and 95% confidence interval (95% CI) adjusting for age, education, recruitment sites, TNM stage, hormone status, nuclear grade and total calorie. RESULTS: There was no significant association between any one-carbon metabolism related nutrients (vitamin B2, B6 and folate) and the progression of breast cancer overall. However, one-carbon metabolism related nutrients were associated with disease progression in breast cancer patients stratified by subtypes. In ER + and/or PR + breast cancers, no association was observed; however, in ER--/PR-- breast cancers, a high intake of vitamin B2 and folate statistically elevated the HR of breast cancer progression (HR = 2.28; 95% CI, 1.20-4.35, HR = 1.84; 95% CI, 1.02-3.32, respectively) compared to a low intake. This positive association between the ER/PR status and progression of the disease was profound when the nutrient intakes were categorized in a combined score (Pinteraction = 0.018). In ER--/PR-- breast cancers, high combined scores were associated with a significantly poor DFS compared to those belonging to the low score group (HR = 3.84; 95% CI, 1.70-8.71). CONCLUSIONS: In conclusion, our results suggest that one-carbon related nutrients have a role in the prognosis of breast cancer depending on the ER/PR status.  相似文献   
993.
994.
Endothelial dysfunction is a major clinical problem affecting virtually every patient requiring critical care. Volatile anesthetics are frequently used during the perioperative period and protect the heart and kidney against ischemia and reperfusion injury. We aimed to determine whether isoflurane, the most commonly used volatile anesthetic in the USA, protects against endothelial apoptosis and necrosis and the mechanisms involved in this protection. Human endothelial EA.hy926 cells were pretreated with isoflurane or carrier gas (95% room air + 5% CO(2)) then subjected to apoptosis with tumor necrosis factor-α or to necrosis with hydrogen peroxide. DNA laddering and in situ Terminal Deoxynucleotidyl Transferase Biotin-dUTP Nick-End Labeling (TUNEL) staining determined EA.hy926 cell apoptosis and percent LDH released determined necrosis. We also determined whether isoflurane modulates the expression and activity of sphingosine kinase-1 (SK1) and induces the phosphorylation of extracellular signal regulated kinase (ERK MAPK) as both enzymes are known to protect against cell death. Isoflurane pretreatment significantly decreased apoptosis in EA.hy926 cells as evidenced by reduced TUNEL staining and DNA laddering without affecting necrosis. Mechanistically, isoflurane induces the phosphorylation of ERK MAPK and increased SK1 expression and activity in EA.hy926 cells. Finally, selective blockade of SK1 (with SKI-II) or S1P(1) receptor (with W146) abolished the anti-apoptotic effects of isoflurane. Taken together, we demonstrate that isoflurane, in addition to its potent analgesic and anesthetic properties, protects against endothelial apoptosis most likely via SK1 and ERK MAPK activation. Our findings have significant clinical implication for protection of endothelial cells during the perioperative period and patients requiring critical care.  相似文献   
995.
Nam YS  Park H  Magyar AP  Yun DS  Pollom TS  Belcher AM 《Nanoscale》2012,4(11):3405-3409
A highly porous electrode comprised of biologically templated iridium oxide-gold (IrO(2)-Au) hybrid nanowires is introduced for electrochromic applications. A filamentous M13 virus is genetically engineered to display IrO(2)-binding peptides on the viral surface and used as a template for the self-assembly of IrO(2) nanoclusters into a nanowire. The open porous morphology of the prepared nanowire film facilitates ion transport. Subsequently, the redox kinetics of the IrO(2) nanowires seems to be limited by the electric resistance of the nanowire film. To increase the electron mobility in the nanowires, gold nanoparticles are chemically linked to the virus prior to the IrO(2) mineralization, forming a gold nanostring structure along the long axis of the virus. The resulting IrO(2)-Au hybrid nanowires exhibit a switching time of 35 ms for coloration and 25 ms for bleaching with a transmission change of about 30.5% at 425 nm. These values represent almost an order of magnitude faster switching responses than those of an IrO(2) nanowire film having the similar optical contrast. This work shows that genetically engineered viruses can serve as versatile templates to co-assemble multiple functional molecules, enabling control of the electrochemical properties of nanomaterials.  相似文献   
996.
Choi BG  Chang SJ  Kang HW  Park CP  Kim HJ  Hong WH  Lee S  Huh YS 《Nanoscale》2012,4(16):4983-4988
Solid-state flexible energy storage devices hold the key to realizing portable and flexible electronic devices. Achieving fully flexible energy storage devices requires that all of the essential components (i.e., electrodes, separator, and electrolyte) with specific electrochemical and interfacial properties are integrated into a single solid-state and mechanically flexible unit. In this study, we describe the fabrication of solid-state flexible asymmetric supercapacitors based on an ionic liquid functionalized-chemically modified graphene (IL-CMG) film (as the negative electrode) and a hydrous RuO(2)-IL-CMG composite film (as the positive electrode), separated with polyvinyl alcohol-H(2)SO(4) electrolyte. The highly ordered macroscopic layer structures of these films arising through direct flow self-assembly make them simultaneously excellent electrical conductors and mechanical supports, allowing them to serve as flexible electrodes and current collectors in supercapacitor devices. Our asymmetric supercapacitors have been optimized with a maximum cell voltage up to 1.8 V and deliver a high energy density (19.7 W h kg(-1)) and power density (6.8 kW g(-1)), higher than those of symmetric supercapacitors based on IL-CMG films. They can operate even under an extremely high rate of 10 A g(-1) with 79.4% retention of specific capacitance. Their superior flexibility and cycling stability are evident in their good performance stability over 2000 cycles under harsh mechanical conditions including twisted and bent states. These solid-state flexible asymmetric supercapacitors with their simple cell configuration could offer new design and fabrication opportunities for flexible energy storage devices that can combine high energy and power densities, high rate capability, and long-term cycling stability.  相似文献   
997.
对一种具有全面肤质提升作用的长效气垫粉凝霜进行了功效评价。在广州地区选择21名25~40岁具有彩妆使用习惯的女性,在产品使用前和使用后12 h对皮肤水分、肤色、光泽度、毛孔状况及细纹深度和数量进行了分析;同时考察了使用产品后皮肤表面温度变化情况并就满意度对受试者进行了问卷调查。结果表明,该产品能显著提高肌肤水分,改善肤色,细化毛孔和皮肤纹理,实现较好的遮盖效果并保持长效妆容,并可通过降低皮肤表面温度来提供良好的清凉感。多于85%的受试者对该产品的整体效果表示满意,专业的临床评价也显示该产品安全性高,无受试者出现不良反应。  相似文献   
998.
The cover image is based on the Research Article V2O5/RGO/Pt nanocomposite on oxytetracycline degradation and pharmaceutical effluent detoxification by Mohan, H et al., DOI: 10.1002/jctb.6238 .

  相似文献   

999.
Introduction: A recent study showed that early renal tubular injury is ameliorated in Nod-like receptor pyrin domain-containing protein 3 (NLRP3) KO mice with rhabdomyolysis-induced acute kidney injury (RIAKI). However, the precise mechanism has not been determined. Therefore, we investigated the role of NLRP3 in renal tubular cells in RIAKI. Methods: Glycerol-mediated RIAKI was induced in NLRP3 KO and wild-type (WT) mice. The mice were euthanized 24 h after glycerol injection, and both kidneys and plasma were collected. HKC-8 cells were treated with ferrous myoglobin to mimic a rhabdomyolytic environment. Results: Glycerol injection led to increase serum creatinine, aspartate aminotransferase (AST), and renal kidney injury molecule-1 (KIM-1) level; renal tubular necrosis; and apoptosis. Renal injury was attenuated in NLRP3 KO mice, while muscle damage and renal neutrophil recruitment did not differ between NLRP3 KO mice and WT mice. Following glycerin injection, increases in cleaved caspase-3, poly (ADP-ribose) polymerase (PARP), and a decrease in the glutathione peroxidase 4 (GPX-4) level were observed in the kidneys of mice with RIAKI, and these changes were alleviated in the kidneys of NLRP3 KO mice. NLRP3 was upregulated, and cell viability was suppressed in HKC-8 cells treated with ferrous myoglobin. Myoglobin-induced apoptosis and lipid peroxidation were significantly decreased in siNLRP3-treated HKC-8 cells compared to ferrous myoglobin-treated HKC-8 cells. Myoglobin reduced the mitochondrial membrane potential and increased mitochondrial fission and reactive oxygen species (ROS) and lipid peroxidation levels, which were restored to normal levels in NLRP3-depleted HKC-8 cells. Conclusions: NLRP3 depletion ameliorated renal tubular injury in a murine glycerol-induced acute kidney injury (AKI) model. A lack of NLRP3 improved tubular cell viability via attenuation of myoglobin-induced mitochondrial injury and lipid peroxidation, which might be the critical factor in protecting the kidney.  相似文献   
1000.
Adipose-derived mesenchymal stromal cells (Ad-MSCs) are a promising tool for articular cartilage repair and regeneration. However, the terminal hypertrophic differentiation of Ad-MSC-derived cartilage is a critical barrier during hyaline cartilage regeneration. In this study, we investigated the role of matrilin-3 in preventing Ad-MSC-derived chondrocyte hypertrophy in vitro and in an osteoarthritis (OA) destabilization of the medial meniscus (DMM) model. Methacrylated hyaluron (MAHA) (1%) was used to encapsulate and make scaffolds containing Ad-MSCs and matrilin-3. Subsequently, the encapsulated cells in the scaffolds were differentiated in chondrogenic medium (TGF-β, 1–14 days) and thyroid hormone hypertrophic medium (T3, 15–28 days). The presence of matrilin-3 with Ad-MSCs in the MAHA scaffold significantly increased the chondrogenic marker and decreased the hypertrophy marker mRNA and protein expression. Furthermore, matrilin-3 significantly modified the expression of TGF-β2, BMP-2, and BMP-4. Next, we prepared the OA model and transplanted Ad-MSCs primed with matrilin-3, either as a single-cell suspension or in spheroid form. Safranin-O staining and the OA score suggested that the regenerated cartilage morphology in the matrilin-3-primed Ad-MSC spheroids was similar to the positive control. Furthermore, matrilin-3-primed Ad-MSC spheroids prevented subchondral bone sclerosis in the mouse model. Here, we show that matrilin-3 plays a major role in modulating Ad-MSCs’ therapeutic effect on cartilage regeneration and hypertrophy suppression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号