首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   37篇
  国内免费   2篇
电工技术   2篇
化学工业   191篇
金属工艺   9篇
机械仪表   8篇
建筑科学   17篇
能源动力   18篇
轻工业   30篇
水利工程   2篇
石油天然气   1篇
无线电   19篇
一般工业技术   53篇
冶金工业   10篇
原子能技术   2篇
自动化技术   125篇
  2024年   2篇
  2023年   6篇
  2022年   27篇
  2021年   72篇
  2020年   18篇
  2019年   18篇
  2018年   26篇
  2017年   26篇
  2016年   33篇
  2015年   27篇
  2014年   26篇
  2013年   29篇
  2012年   28篇
  2011年   32篇
  2010年   18篇
  2009年   19篇
  2008年   18篇
  2007年   12篇
  2006年   9篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1992年   2篇
  1986年   1篇
  1980年   1篇
排序方式: 共有487条查询结果,搜索用时 15 毫秒
71.
LDPE/PA6 binary blends and LDPE/PA6/compatibilizer ternary blends were prepared in a Brabender extruder, equipped with a prototype static mixer. Compatibility of the components was estimated by rheological properties (viscosity and a melt flow index), and observations of the structure were made with the help of scanning electron microscopy and tensile strength. It was found that the blends' structure and properties are dependent on the recipe content of the polymer blends and the conditions of their manufacturing. Uniformity of the blends of the thermodynamically immiscible polymers was improved by using a prototype static mixer giving mechanical compatibilization and a compatibilizer giving chemical compatibilization. LDPE grafted with a maleic anhydride (LDPE-g-MAH) was used as a compatibilizer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 719–727, 1998  相似文献   
72.
The use of plants as traditional medicines is common and has prevailed in many different cultures over time. Polymethoxyflavones (PMFs) are natural polyphenols from the group of flavonoids. Zapotin, a member of the PMFs, is found mainly in citrus plants and is almost exclusively limited to their peels. The chemical structure of zapotin has been questioned from the very beginning, since the structure of flavonoids with a single oxygen atom in the C2′ position is extremely rare in the plant kingdom. To clarify this, the structural determination and bio-inspired synthesis of zapotin are discussed in detail in this review. Due to the broad biological potential of PMFs, the complication in the isolation process and characterization of PMFs, as well as their purification, have been estimated by adapting various chromatographic methods. According to available data from the literature, zapotin may be a promising curative agent with extensive biological activities, especially as a chemopreventive factor. Apart from that, zapotin acts as an antidepressant-like, anticancer, antifungal, and antioxidant agent. Finally, accessible studies about zapotin metabolism (absorption, distribution, metabolism, excretion, and toxicity) underline its potential in use as a therapeutic substance.  相似文献   
73.
G protein-coupled receptor 55 (GPR55) is a recently deorphanized lipid- and peptide-sensing receptor. Its lipidic endogenous agonists belong to lysoglycerophospholipids, with lysophosphatidylinositol (LPI) being the most studied. Peptide agonists derive from fragmentation of pituitary adenylate cyclase-activating polypeptide (PACAP). Although GPR55 and its ligands were implicated in several physiological and pathological conditions, their biological function remains unclear. Thus, the aim of the study was to conduct a large-scale re-analysis of publicly available gene expression datasets to identify physiological and pathological conditions affecting the expression of GPR55 and the production of its ligands. The study revealed that regulation of GPR55 occurs predominantly in the context of immune activation pointing towards the role of the receptor in response to pathogens and in immune cell lineage determination. Additionally, it was revealed that there is almost no overlap between the experimental conditions affecting the expression of GPR55 and those modulating agonist production. The capacity to synthesize LPI was enhanced in various types of tumors, indicating that cancer cells can hijack the motility-related activity of GPR55 to increase aggressiveness. Conditions favoring accumulation of PACAP-derived peptides were different than those for LPI and were mainly related to differentiation. This indicates a different function of the two agonist classes and possibly the existence of a signaling bias.  相似文献   
74.
Searching for effects of candidate gene polymorphisms on fatness traits is an important goal for pig industry. In this study we evaluated polymorphism of four porcine genes involved in energy metabolism (RETN, UCP1, UCP3 and ADRB3). Moreover, their association with fat deposition traits was analyzed in two breeds (Polish Landrace, Polish Large White) and a Polish synthetic line (L990). Altogether, five SNPs were identified, including two novel ones in the 5′-flanking region of the RETN gene and a novel missense substitution in the UCP3. Distribution of these polymorphisms in the studied five breeds and the synthetic line was not uniform. Two of the analyzed SNPs: g.−178G > A in the RETN and g.946C > T in the UCP3 gene revealed a significant association with abdominal fat weight or backfat thickness. Such associations were not observed for the UCP1 or ADRB3 gene polymorphisms. Our study showed that polymorphisms of the UCP3 and RETN genes are potentially associated with porcine fatness traits.  相似文献   
75.
Extrusion of immiscible polymers under special conditions can lead to creation of microfibrillar‐phase morphology, ensuring significant increase of mechanical properties of polymer profiles. Polyethylene/polypropylene blend extrudates with microfibrillar‐phase morphology (polypropylene microfibrils reinforcing polyethylene matrix phase) were prepared through continuous extrusion with semihyperbolic‐converging die enabling elongation and orientation of microfibrils in flow direction. Structure of extruded profiles was examined using electron microscopy and wide‐angle X‐ray scattering. Tensile tests proved that extrudates with microfibrillar‐phase morphology show significantly higher mechanical properties than the conventional extrudates. The presented concept offers possibility of replacing the existing expensive multi‐component medical devices with fully polymeric tools. POLYM. COMPOS., 31:1427–1433, 2010. © 2009 Society of Plastics Engineers  相似文献   
76.
Commercial MgAlZn alloy AZ31 was processed by hot extrusion and equal channel angular pressing (ECAP) known as EX-ECAP. Microstructure and defect structure evolution with strain due to ECAP were investigated by TEM, positron annihilation spectroscopy (PAS), and X-ray diffraction. Significant grain refinement was obtained by EX-ECAP. In the extruded condition relatively low density of dislocations was determined by PAS. Sharp increase of dislocation density occurred during the first two passes of ECAP, followed by the saturation and even a decline manifesting the dynamic recovery at higher strains. XRD line profile analysis confirmed the results of PAS with slightly higher values of dislocation densities in individual conditions. Detailed analysis of contrast factors allows to determine the type of dislocations and to draw conclusions about slip activation and its variations with strain. The influence of microstructure evolution on mechanical properties is discussed.  相似文献   
77.
Lithium bis(fluorosulfonyl)imide (LiFSI) in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was successfully tested as an electrolyte for graphite composite anodes at elevated temperature of 55 °C. The graphite anode showed a good cyclability during the galvanostatic testing at C/10 rate and 55 °C with the capacity close to theoretical. The formation of SEI in different electrolytes was the subject of study using impedance spectroscopy on symmetrical cells containing two lithium electrodes. The 0.7 m LiFSI in PYR14TFSI exhibits a good ionic conductivity (5.9 mS cm−1 at 55 °C) along with high electrochemical stability and high thermal stability. These properties allow their potential application in large-scale lithium ion batteries with improved safety.  相似文献   
78.
79.
This paper presents a fully automatic system intended to detect leaks of dielectric fluid in underground high-pressure, fluid-filled (HPFF) cables. The system combines a number of artificial intelligence (AI) and data processing techniques to achieve high detection capabilities for various rates of leaks, including leaks as small as 15 l per hour. The system achieves this level of precision mainly thanks to a novel auto-tuning procedure, enabling learning of the Bayesian network – the decision-making component of the system – using simulated leaks of various rates. Significant new developments extending the capabilities of the original leak detection system described in [1] and [2] form the basis of this paper. Tests conducted on the real-life HPFF cable system in New York City are also discussed.  相似文献   
80.
Superior electrical properties of carbon nanotubes were utilized by the authors in the fabrication of printed resistors. In common applications such as electrodes or sensors, only basic electrical and mechanical properties are investigated, leaving aside other key parameters related to the stability and reliability of particular elements. In this paper we present experimental results on the properties of printed resistive layers. One of the most important issues is their stability under high currents creating excessive thermal stresses. In order to investigate such behavior, a high direct current stress test was performed along with the observation of temperature distribution that allowed us to gain a fundamental insight into the electrical behavior at such operating conditions. These experiments allowed us to observe parametric failure or catastrophic damage that occurred under excessive supply parameters. Electrical parameters of all investigated samples remained stable after applying currents inducing an increase in temperature up to 130 °C and 200 °C. For selected samples, catastrophic failure was observed at the current values inducing temperature above 220 °C and 300 °C but in all cases the failure was related to the damage of PET or alumina substrate. Additional experiments were carried out with short high voltage pulse stresses. Printed resistors filled with nanomaterials sustained similar voltage levels (up to 750 V) without changing their parameters, while commonly used graphite filled polymer resistors changed their resistance value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号