首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   10篇
  国内免费   6篇
电工技术   3篇
综合类   1篇
化学工业   46篇
金属工艺   3篇
机械仪表   4篇
建筑科学   8篇
能源动力   6篇
轻工业   14篇
水利工程   10篇
石油天然气   4篇
武器工业   1篇
无线电   13篇
一般工业技术   34篇
冶金工业   14篇
自动化技术   19篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   6篇
  2019年   11篇
  2018年   13篇
  2017年   11篇
  2016年   7篇
  2015年   7篇
  2014年   14篇
  2013年   12篇
  2012年   9篇
  2011年   17篇
  2010年   14篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1995年   3篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有180条查询结果,搜索用时 62 毫秒
31.
In the present work, Al-xB4C nanocomposite (x = 0, 1, 2, 3, 4 and 5 in wt%, having the average B4C size of 50 nm) were prepared using a high-energy ball mill. The milling times up to 16 h were applied. Then, the microstructural evolutions, mechanical properties, compressibility and sintering behavior of nanocomposites were investigated. The changes in powders morphology and microstructure during the milling process were characterized by laser diffraction particle size analyzer (LDA), SEM, XRD, EDS and TEM techniques. Compressibility and sintering behavior of milled powders compacted under different pressures (100–900 MPa) and at different sintering temperatures (500, 550 and 600 °C) were also studied. The pressing behavior of the nanocomposites was analyzed using linear compaction equations developed by Heckel, Panelli-Filho and Ge. The results showed the significant effects of B4C amounts and sintering temperatures on the compressibility and sintering behavior of nanocomposites. The increase in the B4C amount led to a decrease in both the compressibility rate and the sinterability of specimens. The maximum compression strength of 265 MPa and Vickers hardness of 165 VHN were obtained for Al-5 wt.% B4C nanocomposite milled for 16 h followed by sintering at 600 °C.  相似文献   
32.
Hydrodynamic characteristics of a gas-solid semi-cylindrical fluidized bed was experimentally investigated and compared with that of a cylindrical bed by analysis of pressure fluctuations. Pressure fluctuations were analyzed in time and frequency domains using standard deviation, power spectral density function and discrete wavelet transform methods. Experiments were carried out in two semi-cylindrical and cylindrical fluidized beds of 14?cm in diameter each, operating in the bubbling fluidization regime at ambient pressure and temperature. Both beds were filled with glass beads of various sizes (120, 290 and 450?µm). The superficial gas velocity was varied in the range of 0.2–0.8?m/s. Results showed that although the minimum fluidization velocity is influenced by the particle size, it is not affected by the geometry of the bed. It was shown that the hydrodynamics of both beds are very similar and the difference is negligible. Number of large bubbles is slightly larger in the semi-cylindrical bed as compared with the cylindrical bed. Also, increase in the particle size and superficial gas velocity result in a greater difference between the number of large bubbles in both beds and the number of large bubbles in the semi-cylindrical bed increases slightly faster than in the cylindrical bed.  相似文献   
33.
Artificial neural networks (ANNs) are well-known estimators for the output of broad range of complex systems and functions. In this paper, a common ANN architecture called multilayer perceptron (MLP) is used as a fast optical packet loss rate (OPLR) estimator for bufferless optical packet-switched (OPS) networks. Considering average loads at the ingress switches of an OPS network, the proposed estimator estimates total OPLR as well as ingress OPLRs (the OPLR of optical packets sent from individual ingress switches). Moreover, a traffic policing algorithm called OPLRC is proposed to control ingress OPLRs in bufferless slotted OPS networks with asymmetric loads. OPLRC is a centralized greedy algorithm which uses estimated ingress OPLRs of a trained MLP to tag some optical packets at the ingress switches as eligible for drop at the core switches in case of contention. This will control ingress OPLRs of un-tagged optical packets within the specified limits while giving some chance for tagged optical packets to reach their destinations. Eventually, the accuracy of the proposed estimator along with the performance of the proposed algorithm is evaluated by extensive simulations. In terms of the algorithm, the results show that OPLRC is capable of controlling ingress OPLRs of un-tagged optical packets with an acceptable accuracy.  相似文献   
34.

In this paper, a solution to the optimal power flow (OPF) problem in electrical power networks is presented considering high voltage direct current (HVDC) link. Furthermore, the effect of HVDC link converters on the active and reactive power is evaluated. An objective function is developed for minimizing power loss and improving voltage profile. Gradient-based optimization techniques are not viable due to high number of OPF equations, their complexity and equality and inequality constraints. Hence, an efficient global optimization method is used based on teaching–learning-based optimization (TLBO) algorithm. The performance of the suggested method is evaluated on a 5-bus PJM network and compared with other algorithms such as particle swarm optimization, shuffled frog-leaping algorithm and nonlinear programming. The results are promising and show the effectiveness and robustness of TLBO method.

  相似文献   
35.
The effect of mode of sparging gas on the mixing parameters of an internal loop airlift bioreactor was investigated. Two bioreactors of identical volume of 14×103 cm3 and the optimum riser to downcomer cross sectional area ratio of 0.6 were studied. In one bioreactor a gas sparger was located in the draft tube and in the annulus in another. Liquid mixing characteristics, i.e., mixing time and circulation time, were employed to describe the performance of the bioreactors. The tracer injection method was used to determine the mixing parameters. A mathematical modeling based on the tanks-in-series model was employed to characterize the hydrodynamics behavior of the bioreactors. Matlab 7.1 software was used to solve the model equations in the Laplace domain and determine the model parameter, the number of stages. A comparison between the simulation results and experimental data showed that the applied model can accurately describe the behavior of the bioreactors. The results showed that when the gas sparger was located in the draft tube, the liquid mixing time, circulation time, and the number of stage were less than while the gas sparger was located in annulus. This is due to more wall effects, more energy losses and pressure drop in the case of gas injection in the annulus.  相似文献   
36.
The effects of La, Mg and Ca promoters on carbonaceous surface and bulk iron carbide species formed in the alkali promoted iron catalysts are studied under realistic Fischer–Tropsch synthesis (FTS) conditions. Compositions of bulk iron phase and phase transformations of carbonaceous species during pretreatment and FTS reaction were characterized using the temperature-programmed surface reaction with hydrogen (TPSR-H2) and XRD techniques. Many carbonaceous species on surface and bulk were qualitatively and quantitatively identified by combined TPSR-H2 and XRD spectra of the alkali promoted iron catalyst. These species, sorted by the their reactivity with H2 from high to low, were recognized as (a) adsorbed, atomic carbon; (b) amorphous, lightly polymerized hydrocarbon or carbon surface species; (c) bulk carbides and (d) disordered and moderately ordered graphitic surface carbons. The results revealed that while the surface basicity of the iron catalyst increased the CO dissociation proceeds faster than carbon hydrogenation. This phenomenon leads to excessive carbon deposition and formation of inactive iron carbide phases and graphitic type carbonaceous surface species, and consequently leads to catalyst deactivation.  相似文献   
37.
A set of mathematical models are developed based on thermodynamics, mass transfer, and crystallisation concepts to predict hydrate formation rate and the aqueous phase composition in the flow loop. In order to validate the model, experimental study is carried out in a 10 m loop with the inside diameter of 10.6 mm using gas mixture of 73% methane and 27% propane to measure the hydrate formation rate. The experimental conditions include temperature from 4 to 5°C and pressures between 2 and 3 MPa. Good agreements are noticed when the experimental and theoretical hydrate formation rates are compared at different operating conditions.  相似文献   
38.
In this paper, a numerical method for J-integral evaluation of plates weakened by U-notches for brittle or quasi-brittle functionally graded steel (FGS) has been proposed. The material contains austenite phase in addition to martensite layer produced by electroslag remelting (ESR). The Young’s modulus and the Poisson’s ratio have been assumed to be constant, while other mechanical properties vary exponentially along the specimen width. The effect of notch depth on the J-integral and the critical fracture load has been studied. A comparison of the J-integral between functionally graded and homogeneous steels was made, where the notch tip in the functionally graded steel is situated in a layer with same mechanical properties as the homogeneous steel.  相似文献   
39.
The kinetics of the gas–solid Fischer–Tropsch synthesis over a precipitated Fe/Cu/La/SiO2 catalyst was studied in a well mixed, continuous spinning basket reactor. A wide range of synthesis gas conversions have been obtained by varying experimental conditions. Several Langmuir–Hinshelwood–Hougen–Watson type rate equations were derived based on detailed sets of possible reaction mechanisms originating from the carbide, enolic and combined enol/carbide mechanisms. Three models for the Fischer–Tropsch reaction rate were fitted to the experimental reaction rates. Kinetic parameters of models are determined using the genetic algorithm approach (GA), followed by the Levenberg–Marquardt (LM) method to make refined optimization, and are validated by means of statistical analysis. Simulations using the optimal kinetic models derived showed good agreement with experimental data.  相似文献   
40.
Current fatigue design methods for assessing welded steel structures under complex combined or multiaxial loading are known to be potentially unsafe. This has led to a number of research projects over the past 10 years. Some progress has been made in developing better methods, but they are not yet suitable for general design. This paper presents an interim solution based on a review and analysis of relevant published data; all referring to fatigue failure from a fillet weld toe. These indicate that Eurocode 3/IIW S – N curve FAT80/3 (negative inverse slope of 3) is suitable for combined normal and shear stresses acting in phase, and possibly for out-of-phase (i.e. non-proportional loading) bending and shear if the shear stress is not due to torsion. However, a shallower curve FAT80/5 is necessary for out-of-phase torsion and bending or tension. Both curves are used in conjunction with the nominal maximum principal stress range occurring during the loading cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号