首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1175篇
  免费   83篇
  国内免费   1篇
电工技术   11篇
化学工业   513篇
金属工艺   12篇
机械仪表   24篇
建筑科学   32篇
矿业工程   1篇
能源动力   49篇
轻工业   206篇
水利工程   7篇
石油天然气   1篇
无线电   59篇
一般工业技术   199篇
冶金工业   55篇
原子能技术   4篇
自动化技术   86篇
  2024年   2篇
  2023年   26篇
  2022年   59篇
  2021年   103篇
  2020年   34篇
  2019年   40篇
  2018年   56篇
  2017年   46篇
  2016年   53篇
  2015年   45篇
  2014年   48篇
  2013年   68篇
  2012年   59篇
  2011年   86篇
  2010年   73篇
  2009年   49篇
  2008年   77篇
  2007年   64篇
  2006年   46篇
  2005年   24篇
  2004年   21篇
  2003年   26篇
  2002年   21篇
  2001年   13篇
  2000年   14篇
  1999年   12篇
  1998年   4篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1977年   6篇
  1975年   3篇
  1974年   2篇
  1970年   2篇
  1966年   2篇
排序方式: 共有1259条查询结果,搜索用时 333 毫秒
101.
Using argon as a diluent of SiH4, undoped hydrogenated microcrystalline silicon (μc-Si:H) films, having σD10−5 S cm−1, were prepared at a very high deposition rate of 36 Å/min. Micrograins were identified with several well-defined crystallographic orientations. The effect of variation of Ar-dilution on the electrical and structural properties of Si:H films were studied systematically. Addition of H2 to the Ar-diluted SiH4 plasma improved the network structure by eliminating defects, introducing structural reorientation and grain growth, although, reducing the deposition rate. Accordingly, highly conducting (σD10−3S cm−1) undoped μc-Si:H film was achieved utilizing energy released by de-excitation of metastable state of Ar (denoted as Ar*), in association with network modulation by atomic hydrogen in the plasma.  相似文献   
102.
A novel idea by using copper (Cu) pillar is proposed in this study, which can replace the through-silicon-vias (TSV) technique in future three-dimensional (3D) architecture. The Cu pillar formation under external bias in an Al/Cu/Al2O3/TiN structure is simple and low cost. The Cu pillar is formed in the Al2O3 film under a small operation voltage of <5 V and a high-current-carrying conductor of >70 mA is obtained. More than 100 devices have shown tight distribution of the Cu pillars in Al2O3 film for high current compliance (CC) of 70 mA. Robust read pulse endurances of >106 cycles are observed with read voltages of −1, 1, and 4 V. However, read endurance is failed with read voltages of −1.5, −2, and −4 V. By decreasing negative read voltage, the read endurance is getting worst, which is owing to ruptured Cu pillar. Surface roughness and TiO x N y on TiN bottom electrode are observed by atomic force microscope and transmission electron microscope, respectively. The Al/Cu/Al2O3/TiN memory device shows good bipolar resistive switching behavior at a CC of 500 μA under small operating voltage of ±1 V and good data retention characteristics of >103 s with acceptable resistance ratio of >10 is also obtained. This suggests that high-current operation will help to form Cu pillar and lower-current operation will have bipolar resistive switching memory. Therefore, this new Cu/Al2O3/TiN structure will be benefited for 3D architecture in the future.  相似文献   
103.
Dental implants are an established therapy for oral rehabilitation. High success rates are achieved in healthy bone, however, these rates decrease in compromised host bone. Coating of dental implants with components of the extracellular matrix is a promising approach to enhance osseointegration in compromised peri-implant bone. Dental titanium implants were coated with an artificial extracellular matrix (aECM) consisting of collagen type I and either one of two regioselectively low sulfated hyaluronan (sHA) derivatives (coll/sHA1Δ6s and coll/sHA1) and compared to commercial pure titanium implants (control). After extraction of the premolar teeth, 36 implants were inserted into the maxilla of 6 miniature pigs (6 implants per maxilla). The healing periods were 4 and 8 weeks, respectively. After animal sacrifice, the samples were evaluated histomorphologically and histomorphometrically. All surface states led to a sufficient implant osseointegration after 4 and 8 weeks. Inflammatory or foreign body reactions could not be observed. After 4 weeks of healing, implants coated with coll/sHA1Δ6s showed the highest bone implant contact (BIC; coll/sHA1Δ6s: 45.4 %; coll/sHA1: 42.2 %; control: 42.3 %). After 8 weeks, a decrease of BIC could be observed for coll/sHA1Δ6s and controls (coll/sHA1Δ6s: 37.3 %; control: 31.7 %). For implants coated with coll/sHA1, the bone implant contact increased (coll/sHA1: 50.8 %). Statistically significant differences could not be observed. Within the limits of the current study, aECM coatings containing low sHA increase peri-implant bone formation around dental implants in maxillary bone compared to controls in the early healing period.  相似文献   
104.
105.
Performance metrics of a system with single input and single output is straight forward and is generally termed as ‘efficiency’. However, for systems with multiple outputs, defined performance metrics has to include effects of all outputs on a rational basis. For systems with both multiple inputs and outputs such definition is even more complicated. Polygeneration is the integration of multiple utility outputs with one or more inputs for better performance. The better performance may again be assessed from different aspects, e.g., thermodynamic, economic, social, etc. Performance metrics of polygeneration is not unique. It depends on type of systems as well as objective of evaluation of it. In this paper, several possible performance parameters for polygeneration are discussed. Evaluation of performance is also tested with multi-dimensional viewpoints. Simulation results of two polygeneration schemes are used to show case studies for these defined performance parameters. Relative performance of polygeneration schemes with different fuel inputs is presented to show the performance variation of these schemes with multi-dimensional viewpoints.  相似文献   
106.
Wireless Networks - Energy conservation and fault tolerance are the most two important challenging issues for the development of large scale wireless sensor networks (WSNs). Failure of cluster...  相似文献   
107.
Aluminium doped ZnO films have been developed by RF-magnetron sputtering at 350 °C substrate temperature on glass substrate and commercially available SnO2-coated glass substrate. The developed ZnO and SnO2/ZnO films can be used as the substrates of microcrystalline silicon based solar cell. The electrical, optical properties and surface morphologies of ZnO film and SnO2/ZnO bi-layer films have been investigated and they are compared with the commercially available SnO2-coated glass substrate. The resistivities of ZnO and SnO2 films are comparable (10−4 Ω-cm). Surface morphologies of different transparent conducting oxide coated substrates before and after H-plasma exposure were studied by scanning electron microscopy. The optical transmission of ZnO, SnO2/ZnO and SnO2 films are comparable and varies from 85 to 90% in the visible region. The optical transmission reduces drastically to less than 20% in SnO2 films and for ZnO film it remains almost unchanged after H-plasma exposure. For SnO2/ZnO film transmission decreases slightly but remains considerably high (80%). The performance of microcrystalline silicon solar cells fabricated on different transparent conducting oxides as substrates (ZnO/glass, SnO2/glass and ZnO/SnO2/glass double layer) is investigated in detail.  相似文献   
108.
The effect of temperature on the electrode kinetics of photovoltage generation in photoelectrochemical (PEC) cells consisting of a phenazine dye-EDTA system, separated from an aqueous solution of an electron acceptor like iodine by a salt bridge has been studied. The phenazine dyes used are phenosafranin, safranin-O, and safranin-T. The maximum photovoltages (Voc) generated and the sunlight engineering efficiency (SEE) have been found to increase with increasing temperature, but there is a fixed critical temperature for each dye above which the Voc decreases: 29°C for phenosafranin, 35°C for safranin-T, and 40°C for safranin-O. The photovoltage growth and decay follow the functional forms related to the relaxation times. The rate constants for the forward and backward reactions have been calculated from these relaxation times at different temperatures. The rate of the photoinduced chemical reaction increases with an increase in temperature from 20°C–50°C for all the dyes, with concomitant decrease for the backward reaction. The free energies of electron transfer across the electrode/electrolyte interface have been calculated. The activation energies calculated from the rate constants at different temperatures for phenosafranin-EDTA, safranin-T-EDTA, and safranin-O-EDTA reactions are 5.14, 5.60, and 5.63 kJ mol−1 respectively.  相似文献   
109.
Waste water of copper mines and copper processing plant contains both copper and selenium ions with other contaminants. In this paper simultaneous photoreductive removal of copper (II) and selenium (IV) is studied for the first time using spherical binary oxide photocatalysts under visible light. All the synthesized materials are found to be mesoporous in nature with reasonably high surface area. Among a range of hole scavengers, only EDTA (ethylene diamine tetraacetic acid) and formic acid are found to be the most active for the reduction reaction. A comparative study is carried out using both the hole scavengers varying reaction time, concentration, pH etc. For a single contaminant, EDTA is found to be the best for Cu(II) reduction whereas formic acid is the best for Se(IV) reduction. In a mixed solution both EDTA and formic acid perform very well under visible light irradiation. Highest photocatalytic reduction in a mixed solution is observed at pH 3. Among all the synthesized materials, TiZr-10 performs as the best photocatalyst for both Cu(II) and Se(IV) reduction. However under UV light, Degussa P25 performs slightly better than TiZr-10. Present study shows that 100 ppm of mixed solution can be removed under visible light in 40 min of reaction using TiZr-10 as catalyst. Photodeposited material is found to be copper selenide rather than pure copper and selenium metal. This indicates that the waste water containing copper and selenium ions can be efficiently treated under visible or solar light.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号