首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   4篇
  国内免费   3篇
电工技术   3篇
化学工业   47篇
金属工艺   10篇
机械仪表   6篇
能源动力   6篇
轻工业   7篇
无线电   12篇
一般工业技术   47篇
冶金工业   8篇
原子能技术   1篇
自动化技术   17篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   10篇
  2020年   5篇
  2019年   8篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2014年   6篇
  2013年   10篇
  2012年   11篇
  2011年   13篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有164条查询结果,搜索用时 6 毫秒
161.
162.
    
Selection of geometrical and machining parameters has great influence in machining performance. Predictive modeling can be used in optimization and control of process parameters. This study focuses on the optimization and sensitivity analysis of machining parameters, and fine-tuning requirements to obtain better machining performance. A statistical prediction model was developed in terms of tool geometrical parameters such as rake angle, nose radius, and machining parameters such as cutting speed, feed rate, and depth of cut. Central composite response surface methodology with five parameters and five levels was used to create a mathematical model, and the adequacy of the model was checked using analysis of variance. The experiments were conducted on aluminum Al 6351 with high-speed steel end mill cutter. Vibration in terms of acceleration amplitude during end milling was measured with two accelerometers—one in tool holder (channel I) and other in workpiece fixture (channel II) respectively. Optimizations of process parameters were performed using genetic algorithm. Sensitivity analysis was performed using developed equations to identify the parameter exerting most influence on vibration amplitude.  相似文献   
163.
164.
    
Glaucoma became a leading reason for losing vision as it progresses in a gradual manner without any symptoms. The discovery of glaucoma at an earlier phase is imperative as it can help to accelerate the progress. The fundus images are an option for screening glaucoma and help to enable the observation of optic disc. The classical techniques are less accurate and time-consuming. In this way, a highly accurate automatic glaucoma diagnosis is developed in this research. The noise in the images is eliminated during pre-processing. Additionally, the DeepJoint model and improved fuzzy clustering technique are combined to develop the proposed Enhanced DeepJoint fuzzy clustering algorithm, which is used to segment blood vessels. The optic disc is additionally divided using black hole entropic fuzzy clustering (BHEFC). In order to identify glaucoma, the acquired segments are fed into a deep Maxout network that has been trained using the multi-verse water rider optimization (MVRWO) algorithm. By combining the rider optimization algorithm, multi-verse optimizer, and water wave optimization (WWO), the MVRWO is produced (ROA). The developed model has the greatest accuracy, sensitivity, and specificity scores, coming in at 93.91%, 95.61%, and 92.57% respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号