首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   19篇
  国内免费   2篇
电工技术   4篇
化学工业   256篇
金属工艺   30篇
机械仪表   55篇
建筑科学   8篇
能源动力   26篇
轻工业   98篇
水利工程   3篇
石油天然气   1篇
无线电   112篇
一般工业技术   167篇
冶金工业   139篇
原子能技术   10篇
自动化技术   62篇
  2023年   5篇
  2022年   9篇
  2021年   19篇
  2020年   8篇
  2019年   5篇
  2018年   10篇
  2017年   10篇
  2016年   9篇
  2015年   7篇
  2014年   28篇
  2013年   34篇
  2012年   40篇
  2011年   42篇
  2010年   39篇
  2009年   43篇
  2008年   44篇
  2007年   37篇
  2006年   21篇
  2005年   32篇
  2004年   42篇
  2003年   42篇
  2002年   45篇
  2001年   29篇
  2000年   43篇
  1999年   34篇
  1998年   52篇
  1997年   28篇
  1996年   35篇
  1995年   28篇
  1994年   16篇
  1993年   13篇
  1992年   6篇
  1991年   8篇
  1990年   10篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1986年   8篇
  1985年   3篇
  1984年   8篇
  1982年   7篇
  1981年   5篇
  1978年   5篇
  1977年   10篇
  1976年   6篇
  1975年   4篇
  1974年   5篇
  1973年   6篇
  1971年   2篇
  1970年   4篇
排序方式: 共有971条查询结果,搜索用时 15 毫秒
71.
A hybrid carbon system of graphite powder (GP) and continuous carbon fibre fabric (CFF) is used for an epoxy composite to improve the electrical conductivity, mechanical properties and mouldability of a composite bipolar plate. These improvements are achieved simultaneously by inserting several layers of CFF into the GP/epoxy composite to enhance the mechanical properties and in-plane conductivity. The electrical properties, flexural strength and mouldability of the composite plates are measured as a function of conducting filler content and number of CFF layers. The composites show improved electrical conductivity, flexural properties and mouldability. Composites with 70-75 vol.% carbon fillers have the highest electrical conductivity with reasonable flexural properties. These results suggest that the poor mouldability and low through-plane electrical conductivity of the continuous fibre composite bipolar plate, as well as the weak flexural properties of GP composites, can be overcome by incorporating a GP/CFF hybrid system.  相似文献   
72.
Recyclable conjugated polymers are important for realizing eco-friendly electronics with advantages of solution processability and flexibility. A recyclable conjugated polymer, PY-TIP is developed, of which a key monomer is successfully extracted via a mild depolymerization process and is reused for the synthesis of novel conjugated polymers. One-shot preparation of polymer acceptor and its bulk-heterojunction (BHJ) is demonstrated from the recycled monomer, Y5-TA, for the first time and the resulting BHJ film shows optimal nanoscale morphology for efficient charge generation and transport. As a result, the solar cells prepared using the BHJ film show a higher efficiency of 13.08% and much improved thermal and mechanical stability compared with those based on the small molecular acceptor. These results are important in that the various polymers can be prepared from the recycled monomer in a solid state without organic solvents and purification step and this strategy is effective for improving the thermal and mechanical stability of the BHJ film as well as achieving high photovoltaic performance. PY-TIP is exemplary in that it can reproduce its monomer which can be used to synthesize conjugated polymers with novel chemical structures and physical properties. This work provides a design guideline for developing recyclable conjugated polymers with dynamic covalent bonds.  相似文献   
73.
The damage process in composite laminates subjected to cryogenic cooling was monitored employing a thermo-acoustic emission (AE) technique. The thermo-AE signals processed with a short-time Fourier transform could be classified into three different types which were correlated with individual microfracture processes. In the initial stage of cryogenic cooling, very strong AE signals with low and high frequency bands were dominantly detected showing that large cracks accompanying fiber breakages were developed mainly. With an increase in the cooling time, weak emissions with low frequency bands became prevalent indicating the propagation of microfractures in the matrix and/or fiber-matrix interface. Similar types of AE signals, however, having weak amplitudes, were also observed for the cryogenically-treated specimens during thermal heating and cooling load cycles. Thus, analysis of thermo-AE behavior through the thermal load cycle led to the nondestructive evaluation for the cryogenic damage of composites.  相似文献   
74.
Scanning tunnelling microscopy (STM) has been used to study isotropic pitch-based carbon fibres before and after steam activation. The results show that the present carbon fibre precursor exhibits a particulate surface which is very favourable for the formation of activated carbon fibre. After activation, the carbon fibre surface becomes much more porous and rougher, and the mesopores are evidently present on the surface. Because the scale is down to atomic resolution, the STM observations offer direct evidence for the existence of micropores on the surface of the activated carbon fibres. In addition, the surface textures of both fibres are presented and discussed.  相似文献   
75.
Fe alloy composites reinforced with in-situ titanium carbide(Ti C) particles were fabricated by reactive sintering using different reactant C/Ti ratios of 0.8,0.9,1 and 1.1 to investigate the microstructure and mechanical properties of in-situ Ti C/Fe alloy composites.The microstructure showed that the in-situ synthesized Ti C particles were spherical with a size of 1–3 μm,irrespective of C/Ti ratio.The stoichiometry of in-situ Ti C increased from 0.85 to 0.88 with increasing C/Ti ratio from 0.8 to 0.9,but remained almost unchanged for C/Ti ratios between 0.9 and 1.1 due to the same driving force for carbon diffusion in Ti Cxat the common sintering temperature.The in-situ Ti C/Fe alloy composite with C/Ti = 0.9 showed improved mechanical properties compared with other C/Ti ratios because the presence of excess carbon(C/Ti = 1 and 1.1) resulted in unreacted carbon within the Fe alloy matrix,while insufficient carbon(C/Ti = 0.8)caused the depletion of carbon from the Fe alloy matrix,leading to a significant decrease in hardness.This study presents that the maximized hardness and superior strength of in-situ Ti C/Fe alloy composites can be achieved by microstructure control and stoichiometric analysis of the in-situ synthesized Ti C particles,while maintaining the ductility of the composites,compared to those of the unreinforced Fe alloy.Therefore,we anticipate that the in-situ synthesized Ti C/Fe alloy composites with enhanced mechanical properties have great potential in cutting tool,mold and roller material applications.  相似文献   
76.
Flexible organic thin-film transistors (OTFT) were fabricated on 304 and 430 stainless steel (SS) substrate with aluminum oxide as a gate insulator and pentacene as an organic semiconductor. Chemical mechanical polishing (CMP) process was used to study the effect of the SS roughens on the dielectric properties of the gate insulator and OTFT characteristics. The surface roughness was decreased from 33.8 nm for 304 SS and 19.5 nm for 430 SS down to ~2.5 nm. The leakage current of the metal–insulator–metal (MIM) structure (Au/Al2O3/SS) was reduced with polishing. Mobility and on/off ratio of pentacene TFT with bare SS showed a wide range of values between 0.005 and 0.36 cm2/Vs and between 103 and 105 depending on the location in the substrate. Pentacene TFTs on polished SS showed an improved performance with a mobility of 0.24–0.42 cm2/Vs regardless of the location in the substrate and on/off ratio of ~105. With self assembled monolayer formation of octadecyltrichlorosilane (OTS) on insulator surface, mobility and on/off ratio of pentacene TFT on polished SS was improved up to 0.85cm2/Vs and ~106. IV characteristics of pentacene TFT with OTS treated Al2O3/304 SS was also obtained in the bent state with a bending diameter (D) of 24, 45 or 70 mm and it was confirmed that the device performed well both in the linear regime and the saturation regime.  相似文献   
77.
S.H. Rhee  K.C. Ludema 《Wear》1978,46(1):231-240
The role of the transfer film in reducing wear of polymers is discussed. It is shown that the transfer film forms more readily on roughened surfaces and that it can exist in a solid state and in a low viscosity or fluid state. Each state controls friction and wear of the polymer in a different way.  相似文献   
78.
Modeling of solid state electrotransport (SSE) was formulated to understand the transport phenomena of the interstitial impurities in gadolinium, are of the rare earth metals. Through numerical analysis, the optimum conditions for SSE are theoretically predicted. The processing parameters such as pressure, temperature, and reaction time can be determined to attain maximum effectiveness. The concentration profiles of interstitial impurities such as oxygen, nitrogen, and carbon were calculated based on this model. The electromigration of oxygen is faster than nitrogen and carbon because of its greater diffusivity and mobility. When the reaction time was 105 seconds, the oxygen and nitrogen were refined up to 92%–95% at 10−5Pa while carbon was refined to 98% at 10−6Pa. The increase in temperature gives rise to a shorter reaction time, but extremely low pressure is required.  相似文献   
79.
Stress-relaxation studies on eutectic Sn-Ag solder (Sn-3.5Ag in wt.%) joints were carried out at various temperatures after imposing different amounts and rates of simple shear strain. Stress-relaxation parameters were evaluated by subjecting geometrically realistic solder joints with a nominal joint thickness of ∼100 μm and a 1 mm × 1 mm solder-joint area. The peak shear stress during preloading and residual shear stress resulting from stress relaxation were higher at the low-temperature extremes than those at high-temperature extremes. Also, those values increased with increasing simple shear strain and the rate of simple shear strain imposed prior to the stress-relaxation events. The relaxation stress is insensitive to simple shear strain at 150°C, but at lower temperatures, a faster rate of simple shear strain causes a higher relaxed-stress value. The resulting deformation structures observed from the solder-joint side surfaces were also strongly affected by these parameters. At high temperature, grain-boundary sliding effects were commonly observed. At low temperature, intense shear bands dominated, and no grain-boundary sliding effects were observed.  相似文献   
80.
Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6th order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker’s Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhoff-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号