首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   561篇
  免费   19篇
  国内免费   1篇
电工技术   7篇
化学工业   253篇
金属工艺   26篇
机械仪表   6篇
建筑科学   17篇
矿业工程   4篇
能源动力   14篇
轻工业   51篇
水利工程   1篇
石油天然气   4篇
无线电   16篇
一般工业技术   94篇
冶金工业   16篇
原子能技术   10篇
自动化技术   62篇
  2023年   3篇
  2022年   7篇
  2021年   23篇
  2020年   16篇
  2019年   13篇
  2018年   13篇
  2017年   12篇
  2016年   20篇
  2015年   13篇
  2014年   26篇
  2013年   27篇
  2012年   17篇
  2011年   32篇
  2010年   41篇
  2009年   26篇
  2008年   26篇
  2007年   20篇
  2006年   13篇
  2005年   12篇
  2004年   9篇
  2003年   10篇
  2002年   12篇
  2001年   9篇
  2000年   7篇
  1999年   4篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   8篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1986年   6篇
  1984年   5篇
  1983年   9篇
  1982年   11篇
  1981年   10篇
  1980年   11篇
  1979年   7篇
  1978年   5篇
  1977年   8篇
  1976年   6篇
  1975年   8篇
  1974年   9篇
  1973年   10篇
  1971年   3篇
  1936年   3篇
排序方式: 共有581条查询结果,搜索用时 31 毫秒
571.
The response of Al2O3, Al2O3–SiC–(C) and Al2O3–C nanocomposites to grinding was investigated in terms of changes of quality of ground surfaces and of the weight losses with time. The study used monolithic polycrystalline aluminas as references, and alumina-based composites with nanosized SiC and C inclusions and with alumina matrix grain size varying from submicrometer to approximately 4 μm. The studied materials can be roughly divided into two groups. Materials with submicrometer alumina matrix grains (Group 1) wear predominantly by plastic deformation and grooving. Coarse-grained materials (Group 2) wear by mixed wear mechanism involving crack initiation and interlinking accompanied by grain pull-out, plastic deformation and grooving. The wear rate of composites increases with increasing volume fraction of SiC. The Group 2 materials wear much faster then those with submicron microstructure. In all cases (with one exception) the wear resistance of composites was higher than that of pure aluminas of comparable grain sizes used as reference materials.  相似文献   
572.
Varnishes used for the inner coatings of food cans are often based on epoxy resins or vinylic organosols. The epoxy resins can be produced from bisphenol A (BPA) and bisphenol F (BPF), and these also contain bisphenol A diglycidyl ether (BADGE) or bisphenol F diglycidyl ether (BFDGE) as stabilising components. These compounds may break down during storage and also by the influence of food simulants. The stability of BADGE and BFDGE were studied using reverse-phase gradient high-performance liquid chromatography (RP-HPLC) with ultraviolet detection (UV). Three experimental conditions for spiked simulants were compared: (1) the storage at 25 °C (C1), (2) the storage at 40 °C (C2) and (3) the storage at 25 °C after 15 min heating at 120 °C (C3). Distilled water, 3% acetic acid and 10% ethanol were used as food simulants. It was observed that BADGE is more stabile than BFDGE. The loss of BADGE and BFDGE were minimal in 10% ethanol (39 and 46% at 25 °C, 60 and 69% at 40 °C, respectively) and highest in 3% acetic acid (60 and 63% at 25 °C, 76 and 82% at 40 °C, respectively). At experiment (C3), the hardest conditions, significant degradation was not shown in comparison with conditions (C1) and (C2), contrariwise BADGE and BFDGE in 10% ethanol were minimal degradated at conditions (C3) from all these experiments (loss of 5 and 8%, respectively).  相似文献   
573.
BACKGROUND: In the tubers of Jerusalem artichoke (Helianthus tuberosus L.) the main carbohydrate is the well‐known prebiotic inulin, which is a good growth substrate for gut microorganisms. Jerusalem artichoke tuber is traditionally consumed boiled or pickled rather than in fermented form. Lactic acid bacteria are traditionally used in the production of fermented foods; nevertheless their behavior and metabolite production are considerably influenced by the substrate. The purpose of this study was to investigate the growth and production of the most important sensorically and antimicrobially active metabolites of different Lactobacillus strains on Jerusalem artichoke juice. RESULTS: All investigated strains grew well (in the range 109 cfu mL?1) in the media. The organic acids (lactic acid, 110–337 mmol L?1; acetic acid, 0–180 mmol L?1; and succinic acid, 0–79 mmol L?1), hydrogen peroxide (0.25–1.77 mg L?1), mannitol (0.06–3.24 g L?1), acetoin and diacetyl production of strains varies not only according to the species but also from strain to strain, which will be demonstrated and discussed in the paper. CONCLUSION: Our results showed that lactobacilli can be used for the fermentation of Jerusalem artichoke, which in this form could be used, alone or mixed with other raw food material, as a new synbiotic functional food. Copyright © 2011 Society of Chemical Industry  相似文献   
574.
This paper introduces novel four‐phase oscillator employing two Dual‐Output Controlled Gain Current Follower Buffered Amplifiers (DO‐CG‐CFBAs), single Current Amplifier, three resistors, and two grounded capacitors suitable for differential quadrature signal production (floating outputs). To control the frequency of oscillation (FO) and condition of oscillation (CO), only the current gain adjustment of active elements is used. The circuit was designed by well‐known state variable approach. The oscillator employs three active elements for linear control of FO and to adjust CO and provides low‐impedance voltage outputs. Furthermore, two straightforward ways of automatic amplitude gain control were used and compared. Active elements with very good performance are implemented to fulfill required features. Suitable CMOS implementation of introduced DO‐CG‐CFBA was shown. Important characteristics of the designed oscillator were verified experimentally and by PSpice simulations to confirm theoretical and expected presumptions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
575.
A DNA methylation pattern represents an original plan of the function settings of individual cells and tissues. The basic strategies of its development and changes during the human lifetime are known, but the details related to its modification over the years on an individual basis have not yet been studied. Moreover, current evidence shows that environmental exposure could generate changes in DNA methylation settings and, subsequently, the function of genes. In this study, we analyzed the effect of chronic exposure to nanoparticles (NP) in occupationally exposed workers repeatedly sampled in four consecutive years (2016–2019). A detailed methylation pattern analysis of 14 persons (10 exposed and 4 controls) was performed on an individual basis. A microarray-based approach using chips, allowing the assessment of more than 850 K CpG loci, was used. Individual DNA methylation patterns were compared by principal component analysis (PCA). The results show the shift in DNA methylation patterns in individual years in all the exposed and control subjects. The overall range of differences varied between the years in individual persons. The differences between the first and last year of examination (a three-year time period) seem to be consistently greater in the NP-exposed subjects in comparison with the controls. The selected 14 most differently methylated cg loci were relatively stable in the chronically exposed subjects. In summary, the specific type of long-term exposure can contribute to the fixing of relevant epigenetic changes related to a specific environment as, e.g., NP inhalation.  相似文献   
576.
A‐ and B‐wheat starch (in native or acetylated form) and potato starch (slightly acetylated) were subjected to benzylation with benzylchloride in various reaction conditions and at various reaction times (40–100°C, 1–90 h). Modified and original starches were characterized by elemental analysis and spectroscopic methods (FT‐IR and 1H NMR). The semicrystalline or amorphous character was indicated by X‐ray powder (XRD) patterns. Rheological properties of benzyl starch of DS ∼ 1 were measured by small amplitude oscillation shear rheology (SAOS) using the rheometer Haake Rheostress RS 80. The results indicated predominantly elastic behavior because the storage modulus was higher than the loss modulus over the whole frequency range; it corresponded to a true gel. The storage and loss moduli increased with increasing frequency while the tangent of phase did not change and was approximately δ = 40°.  相似文献   
577.
578.
The nonionogenic pyrene-based tenside, poly(ethylene glycol) pyrenebutanoate, was prepared and applied in capillary isoelectric focusing with fluorometric detection. This dye was used here as a buffer additive in capillary isoelectric focusing for a dynamic modification of the sample of proteins and microorganisms. The values of the isoelectric points of the labeled bioanalytes were calculated with use of the fluorescent pI markers and were found comparable with pI of the native compounds. The mixed cultures of proteins and microorganisms, Escherichia coli CCM 3954, Staphylococcus epidermidis CCM 4418, Proteus vulgaris, Enterococcus faecalis CCM 4224, and Stenotrophomonas maltophilia, the strains of the yeast cells, Candida albicans CCM 8180, Candida krusei, Candida parapsilosis, Candida glabrata, Candida tropicalis, and Saccharomyces cerevisiae were reproducibly focused and separated by the suggested technique. Using UV excitation for the on-column fluorometric detection, the minimum detectable amount was down to 10 cells injected on the separation capillary.  相似文献   
579.
Work rolls in hot rolling mills are thermally and mechanically loaded; both of these loading aspects are difficult to measure. Laboratory tests can be used for the specification of the thermal load in the cooling area; however a thermal load in a roll gap is still difficult to measure. The paper describes an experimental technique developed for monitoring the work roll surface temperature by sensors embedded in the work roll. Continuous hot rolling pilot line trials were performed for different process conditions. One parameter, for example, roll cooling, rolling velocity, reduction, or skin cooling, can easily be changed during the trials, and the effect on the thermal cycle of the work roll can be directly measured. These thermal measurements give very detailed information about the temperature field. An inverse heat‐conduction model has been developed to compute the surface boundary condition from the measured temperatures. The heat flux and heat transfer coefficient distribution along the roll circumference can be obtained afterwards. The results for different rolling velocities and reductions (up to 50%) are shown.  相似文献   
580.
There is wide industrial interest in developing robust models of long-term (>100 years) glass durability. Archeological glass analogs, glasses of similar composition, and alteration conditions to those being tested for durability can be used to evaluate and inform such models. Two such analog glasses from a 1500-year-old vitrified hillfort near Uppsala, Sweden have previously been identified as potential analogs for low concentration Fe-bearing aluminosilicate nuclear waste glasses. However, open questions remain regarding the melting environment from which these historic glasses were formed and the effect of these conditions on their chemical durability. A key factor to answering the previous melting and durability questions is the redox state of Fe in the starting and final materials. Past work has shown that the melting conditions of a glass-forming melt may influence the redox ratio value (Fe+3/∑Fe), a measure of a glass's redox state, and both melting conditions and the redox ratio may influence the glass alteration behavior. Synthetic analogs of the hillfort glasses have been produced using either fully oxidized or reduced Fe precursors to address this question. In this study, the melting behavior, glass transition temperature, oxidation state, network structure, and chemical durability of these synthesized glass analogs is presented. Resulting data suggests that the degree of network connectivity as impacted by the oxidation state of iron impacted the behavior of the glass-forming melt but in this case does not affect the chemical durability of the final glass. Glasses with a lower degree of melt connectivity were found to have a lower viscosity, resulting in a lower glass transition temperature and softening temperature, as well as in a lower temperature of foam onset and temperature of foam maximum. This lower degree of network connectivity most likely played a more significant role in accelerating the conversion of batch chemicals into glass than the presence of water vapor in the furnace's atmosphere. Future work will focus on using the results from this work with outcomes from other aspects of this project to evaluate long-term glass alteration models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号