首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   12篇
  国内免费   2篇
化学工业   38篇
金属工艺   4篇
机械仪表   2篇
建筑科学   3篇
能源动力   1篇
轻工业   3篇
水利工程   1篇
石油天然气   6篇
无线电   13篇
一般工业技术   35篇
冶金工业   9篇
自动化技术   24篇
  2023年   5篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   14篇
  2017年   10篇
  2016年   10篇
  2015年   7篇
  2014年   8篇
  2013年   18篇
  2012年   9篇
  2011年   14篇
  2010年   6篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1977年   1篇
  1976年   2篇
  1971年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
131.
In this article, density functional theory (DFT) based on generalized gradient approximation (GGA) and GGA+U, U is Hubbard term, is used to study the electronic properties of CdS doped with different dopants (Cr, Mn). The calculations are carried out for Mn-doped CdS, Cr-doped CdS, and co-doping of Mn/Cr in CdS simultaneously. It is found that hopping of electrons is possible with Cr:CdS and Mn:Cr:CdS while Mn:CdS does not allow the hopping of electrons. Moreover, double exchange interactions are observed in Cr:CdS and d-d super-exchange interactions are observed in Mn:CdS. Now the problem becomes interesting when one magnetic ion (Cr) supporting double exchange interactions and another ion (Mn) supporting d-d super-exchange interactions are doped simultaneously in the same system (CdS). The co-doped CdS is more stable even at high Curie temperature due to p-d double exchange interactions and d-d super exchange interactions. Furthermore, the Cr-3d and Mn-3d states present in-between the band gap are responsible for inner shell transitions and hence for optical properties. Therefore, the co-doped system is taken into account to enhance its applications in the field of spintronic and magneto-optical devices.  相似文献   
132.
A complete design of substrate integrated leaky wave cavity antenna for fixed frequency beam steering is presented. The antenna consists of a small rectangular metallic tapered cavity fed by hook-shaped element and covered by the substrate. The steering of the beam in the desired direction is achieved by controlling the taper of the cavity. The beam is scanned at fixed frequency by changing position of the microstrip lines on the substrate. The substrate placed on the cavity resolves the problem of input impedance mismatch. The pertinent features of the antenna are compactness, broadband, and fixed-frequency beam steering capability.  相似文献   
133.
Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity.  相似文献   
134.
Abiotic stresses are the major environmental factors that play a significant role in decreasing plant yield and production potential by influencing physiological, biochemical, and molecular processes. Abiotic stresses and global population growth have prompted scientists to use beneficial strategies to ensure food security. The use of organic compounds to improve tolerance to abiotic stresses has been considered for many years. For example, the application of potential external osmotic protective compounds such as proline is one of the approaches to counteract the adverse effects of abiotic stresses on plants. Proline level increases in plants in response to environmental stress. Proline accumulation is not just a signal of tension. Rather, according to research discussed in this article, this biomolecule improves plant resistance to abiotic stress by rising photosynthesis, enzymatic and non-enzymatic antioxidant activity, regulating osmolyte concentration, and sodium and potassium homeostasis. In this review, we discuss the biosynthesis, sensing, signaling, and transport of proline and its role in the development of various plant tissues, including seeds, floral components, and vegetative tissues. Further, the impacts of exogenous proline utilization under various non-living stresses such as drought, salinity, high and low temperatures, and heavy metals have been extensively studied. Numerous various studies have shown that exogenous proline can improve plant growth, yield, and stress tolerance under adverse environmental factors.  相似文献   
135.
This paper presents a novel Bee Colony based optimization algorithm, named Job Data Scheduling using Bee Colony (JDS-BC). JDS-BC consists of two collaborating mechanisms to efficiently schedule jobs onto computational nodes and replicate datafiles on storage nodes in a system so that the two independent, and in many cases conflicting, objectives (i.e., makespan and total datafile transfer time) of such heterogeneous systems are concurrently minimized. Three benchmarks – varying from small- to large-sized instances – are used to test the performance of JDS-BC. Results are compared against other algorithms to show JDS-BC's superiority under different operating scenarios. These results also provide invaluable insights into data-centric job scheduling for grid environments.  相似文献   
136.
The realization of solar-light-driven CO2 reduction reactions (CO2 RR) is essential for the commercial development of renewable energy modules and the reduction of global CO2 emissions. Combining experimental measurements and theoretical calculations, to introduce boron dopants and nitrogen defects in graphitic carbon nitride (g-C3N4), sodium borohydride is simply calcined with the mixture of g-C3N4 (CN), followed by the introduction of ultrathin Co phthalocyanine through phosphate groups. By strengthening H-bonding interactions, the resultant CoPc/P-BNDCN nanocomposite showed excellent photocatalytic CO2 reduction activity, releasing 197.76 and 130.32 µmol h−1 g−1 CO and CH4, respectively, and conveying an unprecedented 10-26-time improvement under visible-light irradiation. The substantial tuning is performed towards the conduction and valance band locations by B-dopants and N-defects to modulate the band structure for significantly accelerated CO2 RR. Through the use of ultrathin metal phthalocyanine assemblies that have a lot of single-atom sites, this work demonstrates a sustainable approach for achieving effective photocatalytic CO2 activation. More importantly, the excellent photoactivity is attributed to the fast charge separation via Z-scheme transfer mechanism formed by the universally facile strategy of dimension-matched ultrathin (≈4 nm) metal phthalocyanine-assisted nanocomposites.  相似文献   
137.
The development of highly efficient and cost-effective hydrogen evolution reaction (HER) catalysts is highly desirable to efficiently promote the HER process, especially under alkaline condition. Herein, a polyoxometalates-organic-complex-induced carbonization method is developed to construct MoO2/Mo3P/Mo2C triple-interface heterojunction encapsulated into nitrogen-doped carbon with urchin-like structure using ammonium phosphomolybdate and dopamine. Furthermore, the mass ratio of dopamine and ammonium phosphomolybdate is found critical for the successful formation of such triple-interface heterojunction. Theoretical calculation results demonstrate that such triple-interface heterojunctions possess thermodynamically favorable water dissociation Gibbs free energy (ΔGH2O) of -1.28 eV and hydrogen adsorption Gibbs free energy (ΔGH*) of -0.41 eV due to the synergistic effect of Mo2C and Mo3P as water dissociation site and H* adsorption/desorption sites during the HER process in comparison to the corresponding single components. Notably, the optimal heterostructures exhibit the highest HER activity with the low overpotential of 69 mV at the current density of 10 mA cm−2 and a small Tafel slope of 60.4 mV dec−1 as well as good long-term stability for 125 h. Such remarkable results have been theoretically and experimentally proven to be due to the synergistic effect between the unique heterostructures and the encapsulated nitrogen-doped carbon.  相似文献   
138.
In this study, microwave hybrid sintering and conventional sintering of Al2O3- and Al2O3/ZrO2-laminated structures fabricated via aqueous tape casting were investigated. A combination of process temperature control rings and thermocouples was used to measure the sample surface temperatures more accurately. Microwave hybrid sintering caused higher densification and resulted in higher hardness in Al2O3 and Al2O3/ZrO2 than in their conventionally sintered counterparts. The flexural strength of microwave-hybrid-sintered Al2O3/ZrO2 was 70.9% higher than that of the conventionally sintered composite, despite a lower sintering temperature. The fracture toughness of the microwave-hybrid-sintered Al2O3 increased remarkably by 107.8% despite a decrease in the relative density when only 3 wt.% t-ZrO2 was added. The fracture toughness of the microwave-hybrid-sintered Al2O3/ZrO2 was significantly higher (247.7%) than that of the conventionally sintered composite. A higher particle coordination and voids elimination due to the tape casting and the lamination processes, the microwave effect, the stress-induced martensitic phase transformation, and the grain refinement phenomenon are regarded as the main reasons for the mentioned outcomes.  相似文献   
139.
High fabrication cost, chemical instability, and complex immobilization of enzyme molecules are critical issues of enzyme-based glucose sensors. Designing state-of-the-art, binder-free, and non-enzymatic glucose sensing probes plays an imperative role to cope with the aforementioned issues. 3D carbonaceous nanomaterials coated with transition metal vanadates (TMVs) are a favorable biomimetic platform for glucose quantification. Peculiar hierarchical structure, enhanced conductivity, synergistic interaction, multiple oxidation states, and high catalytic activity would make such composite a potential contender for non-enzymatic glucose sensing. Herein, 3D helical-shaped carbon nanocoils (CNCs) are grown on nickel foam (NF) via chemical vapor deposition method to prepare a robust CNCs/NF scaffold. Then, a hydrothermal route is followed to grow interconnected free-standing Ni3V2O8 nanosheets (NSs) on CNCs/NF scaffold. This novel and binder-free Ni3V2O8 NSs/CNCs/NF hierarchical composite possesses superior electrochemical active area (ECSA) and exceptional electrochemical efficacy. Amperometric analysis exhibits extremely prompt detection time (0.1 s), elevated sensitivity (5214 µA mM−1 cm−2), and low detection limit (0.04 µM). Developed sensor demonstrates appreciable recoveries (93.3 to 103.3%) regarding glucose concentration in human serum. The appealing analytical results show that deployment of a 3D helical-shaped hierarchical smart scaffold can be an effective strategy for developing efficient and advanced non-enzymatic glucose sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号