首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3927篇
  免费   184篇
  国内免费   8篇
电工技术   66篇
综合类   6篇
化学工业   863篇
金属工艺   88篇
机械仪表   66篇
建筑科学   285篇
矿业工程   6篇
能源动力   124篇
轻工业   350篇
水利工程   22篇
石油天然气   20篇
无线电   310篇
一般工业技术   699篇
冶金工业   514篇
原子能技术   26篇
自动化技术   674篇
  2023年   31篇
  2022年   57篇
  2021年   104篇
  2020年   61篇
  2019年   91篇
  2018年   76篇
  2017年   81篇
  2016年   124篇
  2015年   115篇
  2014年   154篇
  2013年   212篇
  2012年   193篇
  2011年   287篇
  2010年   173篇
  2009年   210篇
  2008年   241篇
  2007年   206篇
  2006年   161篇
  2005年   143篇
  2004年   139篇
  2003年   94篇
  2002年   90篇
  2001年   67篇
  2000年   77篇
  1999年   70篇
  1998年   158篇
  1997年   109篇
  1996年   84篇
  1995年   58篇
  1994年   60篇
  1993年   52篇
  1992年   33篇
  1991年   25篇
  1990年   27篇
  1989年   26篇
  1988年   25篇
  1987年   14篇
  1986年   16篇
  1985年   15篇
  1984年   23篇
  1983年   8篇
  1982年   8篇
  1981年   11篇
  1980年   8篇
  1977年   15篇
  1976年   16篇
  1975年   7篇
  1974年   7篇
  1969年   6篇
  1968年   6篇
排序方式: 共有4119条查询结果,搜索用时 15 毫秒
91.
Full‐field identification methods are increasingly used to adequately identify constitutive parameters to describe the mechanical behavior of materials. This paper investigates the more recently introduced one‐step method of integrated digital image correlation (IDIC) with respect to the most commonly used two‐step method of finite element model updating (FEMU), which uses a subset‐based DIC algorithm. To make the comparison as objective as possible, both methods are implemented in the most equivalent manner and use the same FE model. Various virtual test cases are studied to assess the performance of both methods when subjected to different error sources: (1) systematic errors, (2) poor initial guesses for the constitutive parameters, (3) image noise, (4) constitutive model errors, and (5) experimental errors. Results show that, despite the mathematical similarity of both methods, IDIC produces less erroneous and more reliable results than FEMU, particularly for more challenging test cases exhibiting small displacements, complex kinematics, misalignment of the specimen, and image noise. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
92.
All life on earth has been established under conditions of stable gravity of 1g. Nevertheless, in numerous experiments the direct gravity dependence of biological processes has been shown on all levels of organization, from single molecules to humans. To study the effects especially of microgravity on biological systems, a variety of platforms are available, from drop towers to the ISS. Due to the costs of these platforms and their limited availability, as an alternative, numerous simulators have been developed for so called “simulated” microgravity. A classical systems is a clinostat, basically rotating a sample around one axis, and by integration of the gravity vector for 360° arguing that thus the effects of gravity are depleted. Indeed, a variety of studies has shown that taking out the direction of gravity from a biological system often results in consequences similar to the exposure of the system to real microgravity. Nevertheless, the opposite has been shown, too, and as a consequence the relevance of clinostats in microgravity research is still under discussion. To get some more insight into this problem we have constructed a small fluorescence clinostat and have studied the effects of clinorotation on the cytosolic calcium concentration of neuroglioma cells. The results have been compared to experiments with identical cells in real microgravity, utilizing parabolic flight missions. Our results show that in case of a cell suspension used in a small florescence clinostat within a tube diameter of 2mm, the effects of clinorotation are comparable to those under real microgravity, both showing a significant increase in intracellular calcium concentration.  相似文献   
93.
94.
We develop a novel coarse-grained contact model for Discrete Element Method simulations of \(\hbox {TiO}_2\) nanoparticle films subjected to mechanical stress. All model elements and parameters are derived in a self-consistent and physically sound way from all-atom Molecular Dynamics simulations of interacting particles and surfaces. In particular, the nature of atomic-scale friction and dissipation effects is taken into account by explicit modelling of the surface features and water adsorbate layers that strongly mediate the particle-particle interactions. The quantitative accuracy of the coarse-grained model is validated against all-atom simulations of \(\hbox {TiO}_2\) nanoparticle agglomerates under tensile stress. Moreover, its predictive power is demonstrated with calculations of force-displacement curves of entire nanoparticle films probed with force spectroscopy. The simulation results are compared with Atomic Force Microscopy and Transmission Electron Microscopy experiments.  相似文献   
95.
96.
Worst-case execution time (WCET) analysis is concerned with computing a precise-as-possible bound for the maximum time the execution of a program can take. This information is indispensable for developing safety-critical real-time systems, e. g., in the avionics and automotive fields. Starting with the initial works of Chen, Mok, Puschner, Shaw, and others in the mid and late 1980s, WCET analysis turned into a well-established and vibrant field of research and development in academia and industry. The increasing number and diversity of hardware and software platforms and the ongoing rapid technological advancement became drivers for the development of a wide array of distinct methods and tools for WCET analysis. The precision, generality, and efficiency of these methods and tools depend much on the expressiveness and usability of the annotation languages that are used to describe feasible and infeasible program paths. In this article we survey the annotation languages which we consider formative for the field. By investigating and comparing their individual strengths and limitations with respect to a set of pivotal criteria, we provide a coherent overview of the state of the art. Identifying open issues, we encourage further research. This way, our approach is orthogonal and complementary to a recent approach of Wilhelm et al. who provide a thorough survey of WCET analysis methods and tools that have been developed and used in academia and industry.  相似文献   
97.
In this paper we present an algorithm to refine space–time finite element meshes as needed for the numerical solution of parabolic initial boundary value problems. The approach is based on a decomposition of the space–time cylinder into finite elements, which also allows a rather general and flexible discretization in time. This also includes adaptive finite element meshes which move in time. For the handling of three-dimensional spatial domains, and therefore of a four-dimensional space–time cylinder, we describe a refinement strategy to decompose pentatopes into smaller ones. For the discretization of the initial boundary value problem we use an interior penalty Galerkin approach in space, and an upwind technique in time. A numerical example for the transient heat equation confirms the order of convergence as expected from the theory. First numerical results for the transient Navier–Stokes equations and for an adaptive mesh moving in time underline the applicability and flexibility of the presented approach.  相似文献   
98.
This paper provides a thorough review of the current state-of-the-art within airline disruption management of resources, including aircraft, crew, passenger and integrated recovery. An overview of model formulations of the aircraft and crew scheduling problems is presented in order to emphasize similarities between solution approaches applied to the planning and recovery problems. A brief overview of research within schedule robustness in airline scheduling is included in the review, since this proactive measure is a natural complement to disruption management.  相似文献   
99.
A modified design approach for compact ultra‐wideband microstrip filters with cascaded/folded stepped‐impedance resonators is described. The key feature of the proposed method is to facilitate stronger coupling between stepped‐impedance resonators and, at the same time, eliminate the requirement of extremely small gaps in coupled‐line sections, as found in traditional designs. Simulations and measurements demonstrate that the filters designed with this technique exhibit good reflection, insertion‐loss, and group‐delay performance within the 3.1–10.6 GHz band. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE 2010.  相似文献   
100.
We demonstrate a technique to recirculate liquids in a microfluidic channel by alternating predominance of centrifugal and capillary forces to rapidly bring the entire volume of a liquid sample to within one diffusion length, δ, of the surface, even for sample volumes hundreds of times the product of δ and the geometric device area. This is accomplished by repetitive, random sampling of an on-disc sample reservoir to form a thin fluid layer of thickness δ in a microchannel, maintaining contact for the diffusion time, then rapidly exchanging the fluid layer for a fresh aliquot by disc rotation and stoppage. With this technique, liquid volumes of microlitres to millilitres can be handled in many sizes of microfluidic channels, provided the channel wall with greatest surface area is hydrophilic. We present a theoretical model describing the balance of centrifugal and capillary forces in the device and validate the model experimentally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号