首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   3篇
  国内免费   2篇
化学工业   21篇
金属工艺   7篇
机械仪表   1篇
建筑科学   2篇
能源动力   1篇
轻工业   7篇
无线电   7篇
一般工业技术   18篇
冶金工业   3篇
原子能技术   1篇
自动化技术   2篇
  2023年   1篇
  2022年   6篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
61.
A new approach to laser-based non-fluorescence detection was developed for microchip-capillary electrophoresis (microchip-CE) utilizing an electrical pick-up device. An intensity-modulated laser beam was irradiated on the microchip, and an acoustic wave was then generated by the periodic thermal expansion. Detection of signals was performed by the measurement of the induced electromagnetic wave with the use of a pickup device. The signal magnitude showed a linear relationship with the laser power and applied voltage, while the acoustic signal displayed a linear dependence on the concentration of the sample over a wide range. The separation of dye mixtures is achieved by the use of this new detection method for microchip-CE.  相似文献   
62.
High temperature tensile fracture behavior has been characterized for the nanostructured ferritic alloy 14YWT (SM10 heat). Uniaxial tensile tests were performed at temperatures ranging from room temperature to 1000 °C in vacuum at a nominal strain rate of 10−3 s−1. Comparing with the existing oxide dispersion strengthened (ODS) steels such as Eurofer 97 and PM2000, the nanostructured alloy showed much higher yield and tensile strength, but with lower elongation. Microstructural characterization for the tested specimens was focused on the details of fracture morphology and mechanism to provide a feedback for process improvement. Below 600 °C, the fracture surfaces exhibited a quasi-brittle behavior presented by a mixture of dimples and cleavage facets. At or above 600 °C, however, the fracture surfaces were fully covered with fine dimples. Above 700 °C dimple formation occurred by sliding and decohesion of grain boundaries. It was notable that numerous microcracks were observed on the side surface of broken specimens. Formation of these microcracks is believed to be the main origin of the poor ductility of 14YWT alloy. It is suggested that a grain boundary strengthening measure is essential to improve the fracture property of the alloy.  相似文献   
63.
64.
Since the discovery of the small ubiquitin-like modifier (SUMO) protein in 1995, SUMOylation has been considered a crucial post-translational modification in diverse cellular functions. In neurons, SUMOylation has various roles ranging from managing synaptic transmitter release to maintaining mitochondrial integrity and determining neuronal health. It has been discovered that neuronal dysfunction is a key factor in the development of major depressive disorder (MDD). PubMed and Google Scholar databases were searched with keywords such as ‘SUMO’, ‘neuronal plasticity’, and ‘depression’ to obtain relevant scientific literature. Here, we provide an overview of recent studies demonstrating the role of SUMOylation in maintaining neuronal function in participants suffering from MDD.  相似文献   
65.
In vitro organoids derived from human pluripotent stem cells (hPSCs) have been developed as essential tools to study the underlying mechanisms of human development and diseases owing to their structural and physiological similarity to corresponding organs. Despite recent advances, there are a few methodologies for three-dimensional (3D) skeletal muscle differentiation, which focus on the terminal differentiation into myofibers and investigate the potential of modeling neuromuscular disorders and muscular dystrophies. However, these methodologies cannot recapitulate the developmental processes and lack regenerative capacity. In this study, we developed a new method to differentiate hPSCs into a 3D human skeletal muscle organoid (hSkMO). This organoid model could recapitulate the myogenesis process and possesses regenerative capacities of sustainable satellite cells (SCs), which are adult muscle stem/progenitor cells capable of self-renewal and myogenic differentiation. Our 3D model demonstrated myogenesis through the sequential occurrence of multiple myogenic cell types from SCs to myocytes. Notably, we detected quiescent, non-dividing SCs throughout the hSkMO differentiation in long-term culture. They were activated and differentiated to reconstitute muscle tissue upon damage. Thus, hSkMOs can recapitulate human skeletal muscle development and regeneration and may provide a new model for studying human skeletal muscles and related diseases.  相似文献   
66.
High entropy alloys(HEAs)have superior mechanical properties that have enabled them to be used as structural materials in nuclear and aerospace applications.As a dissimilar joint design is required for these applications,we created a dissimilar joint between CoCrFeMnNi-HEA and duplex stainless steel(DSS)through laser beam welding;a technique capable of producing a sound joint between the two materials.Microstructure examination using SEM/EBSD/XRD analysis revealed that the weld metal(WM)exhibits an FCC phase regardless of the postweld heat treatment(PWHT)temperature(800 and 1000℃)without forming detrimental intermetallic compounds or microsegregation.The heat-affected zone of the CoCrFeMnNi-HEA showed CrMn oxide inclusions while that of the DSS showed no inclusions.Moreover,a lower hardness was recorded by the WM compared to the base metal after welding.After PWHT,the hardness of the WM,CoCrFeMnNi-HEA,and DSS decreased with an increase in the PWHT temperature.However,the decrease in the hardness of the HEA was more significant than in the WM and DSS.The cause for this reduction in hardness was attributed to recrystallization and grain growth.In addition,a strength of 584 MPa with low ductility was recorded after welding.The obtained strength was lower than that of the BMs,but comparable to that of the welded CoCrFeMnNi-HEA.The application of PWHT resulted in over a 20%increment in ductility,with only a marginal reduction in strength.The deformation mechanism in the as-weld joint was mainly dominated by dislocation while that for the PWHT joint was twinning.We propose laser beam offset welding as a technique to improve the mechanical properties of the dissimilar joint,which will be the subject of future studies.  相似文献   
67.
68.
The temperature‐dependent transition of the crystal phases of poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) was investigated in the electrospinning process. A solution of PVDF‐HFP in N,N‐dimethyl acetamide (DMAc) produced only the β‐phase‐dominant crystal up to 70 °C, irrespective of the spinneret temperature. In a mixed solvent of DMAc and acetone, however, the crystal phase of the electrospun fibers was dependent on temperature: β‐phase‐dominant at 30 and 50 °C and α‐phase‐dominant at 70 °C. The transition was related to a change of the coagulation rate during electrospinning, because the less perfect α phase is preferable to the β phase at a higher coagulation rate. The temperature‐dependent increase of the coagulation rate was more drastic in the presence of acetone, so the transition took place only in the mixed solvent. At elevated temperature, acetone not only raised the evaporation rate of the solvent but promoted the phase separation of the polymer resulting from the lower critical solution temperature behavior, which was rheologically traced. © 2019 Society of Chemical Industry  相似文献   
69.
70.
This study aims to propose a three-dimensional convolutional neural network (3D CNN)-based one-stage model for real-time action detection in video of construction equipment (ADVICE). The 3D CNN-based single-stream feature extraction network and detection network are designed with the implementation of the 3D attention module and feature pyramid network developed in this study to improve performance. For model evaluation, 130 videos were collected from YouTube including videos of four types of construction equipment at various construction sites. Trained on 520 clips and tested on 260 clips, ADVICE achieved precision and recall of 82.1% and 83.1%, respectively, with an inference speed of 36.6 frames per second. The evaluation results indicate that the proposed method can implement the 3D CNN-based one-stage model for real-time action detection of construction equipment in videos of diverse, variable, and complex construction sites. The proposed method paved the way to improving safety, productivity, and environmental management of construction projects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号