AIN thin films were deposited on c-,a-and r-plane sapphire substrates by the magnetron sputtering technique.The in-fluence of high-temperature thermal annealing (HTTA) on the structural,optical properties as well as surface stoichiometry were comprehensively investigated.The significant narrowing of the (0002) diffraction peak to as low as 68 arcsec of AIN after HTTA implies a reduction of tilt component inside the AIN thin films,and consequently much-reduced dislocation densities.This is also supported by the appearance of E2(high) Raman peak and better Al-N stoichiometry after HTTA.Furthermore,the in-creased absorption edge after HTTA suggests a reduction of point defects acting as the absorption centers.It is concluded that HTTA is a universal post-treatment technique in improving the crystalline quality of sputtered AIN regardless of sapphire orienta-tion. 相似文献
The SIR-C/X-SAR imaging radar took its first flight on the Space Shuttle Endeavour in April 1994 and flew for a second time in October 1994. This multifrequency radar has fully polarimetric capability at L- and C-band, and a single polarization at X-band (X-SAR). The Endeavour missions were designated the Space Radar Laboratory-1 (SRL-1) and -2 (SRL-2). Calibration of polarimetric L- and C-band data for all the different modes SIR-C offers is an especially complicated problem. The solution involves extensive analysis of pre-flight test data to come up with a model of the system, analysis of in-flight test data to determine the antenna pattern and gains of the system during operation, and analysis of data from over fourteen calibration sites distributed around the SIR-C/X-SAR orbit track. The SRL missions were the first time a multifrequency polarimetric imaging radar employing a phased array antenna has been flown in space. Calibration of SIR-C data products involved some unique technical problems given the complexity of the radar system. In this paper, the approach adopted for calibration of SIR-C data is described and the calibration performance of the data products is presented 相似文献
This paper presents a CMOS voltage controlled ring oscillator with temperature compensation for low power time-to-digital converters (TDCs). In order to maintain the oscillation frequency stable, a novel compensation circuit is proposed through adaptively sensing temperature variations. This design has been implemented in TSMC 0.35 μm CMOS standard process with an active area of under 0.039 mm2. Experimental results show that the clock frequency is around 159.0 MHz only with a power consumption of 550 μA. As respective to the room temperature the maximum frequency variation is between ?3.46 and +3.08 % under temperature range of ?40 to 85 °C. The bit error time induced by clock jitter is limited within 4.8 % in the whole clock period, and the differential nonlinearity of the TDC is less than 0.408 LSB. 相似文献
To fully utilize the resources of heterogeneous cellular networks (HCNs), an effective approach that offloads users to the underloaded small cells from overloaded macrocells is widely advocated. However, this operation often leads to a bad result that the offloaded users achieve lower signal-to-interference-plus-noise-ratio (SINR) than these users in macrocells. Thus, some appropriate interference avoidance techniques should be adopted to partially alleviate the SINR degradation. For this, we consider the resource (frequency) partitioning that turns off some fraction of such resources in a macrocell. Naturally, an optimal offloading strategy should be closely coupled with resource partitioning, and in turn the optimal partition decides the offloading performance. In this paper, we propose a distributed association strategy with joint offloading and resource partitioning for HCNs. We reveal that load balancing, by itself, is insufficient, and additional resource partitioning is required to improve system performance. Meanwhile, we also show that, compared with the best power association and range extension association, the proposed scheme provides better association performance.
With the dense deployment of small cell networks, low-cost backhaul schemes for small cell base stations (SBSs) have attracted great attentions. Self-backhaul using cellular communication technology is considered as a promising solution. Although some excellent works have been done on self-backhaul in small cell networks, most of them do not consider the recent advances of full-duplex (FD) and massive multiple-input and multiple-output (MIMO) technologies. In this paper, we propose a self-backhaul scheme for small cell networks by combining FD and massive MIMO technologies. In our proposed scheme, the macro base station (MBS) is equipped with massive MIMO antennas, and the SBSs have the FD communication ability. By treating the SBSs as special macro users, we can achieve the simultaneous transmissions of the access link of users and the backhaul link of SBSs in the same frequency. Furthermore, considering the existence of inter-tier and intra-tier interference, we formulate the power allocation problem of the MBS and SBSs as an optimization problem. Because the formulated power allocation problem is a non-convex problem, we transform the original problem into a difference of convex program by successive convex approximation method and variable transformation, and then solve it using a constrained concave convex procedure based iterative algorithm. Finally, extensive simulations are conducted with different system configurations to verify the effectiveness of the proposed scheme. 相似文献
To check students’ daily language learning tasks and give students corresponding reasonable scores based on their daily behavior is hard for teachers. The existing online language learning systems are vulnerable and easy to be modified by teachers or system managers. Blockchain can provide immutable and trusted storage service and automatic calculation service. Therefore, a blockchain-based online language learning system is proposed in this paper to monitor students’ daily study and automatically evaluate their behavior so as to save teachers from tedious and complex homework verification workload and provide trusted and reliable evaluation on students’ behavior. This paper first introduces the current situation of language learning in universities and the related works on blockchain-based online language learning system. Then the system is detailed in its structure and smart contracts. At last, we implement this system and do the analysis and summary.