首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17018篇
  免费   1335篇
  国内免费   652篇
电工技术   967篇
技术理论   2篇
综合类   1124篇
化学工业   3089篇
金属工艺   901篇
机械仪表   1036篇
建筑科学   1415篇
矿业工程   551篇
能源动力   431篇
轻工业   1107篇
水利工程   277篇
石油天然气   980篇
武器工业   90篇
无线电   1923篇
一般工业技术   2152篇
冶金工业   808篇
原子能技术   300篇
自动化技术   1852篇
  2024年   74篇
  2023年   301篇
  2022年   418篇
  2021年   582篇
  2020年   482篇
  2019年   467篇
  2018年   476篇
  2017年   516篇
  2016年   440篇
  2015年   637篇
  2014年   810篇
  2013年   952篇
  2012年   1005篇
  2011年   1012篇
  2010年   892篇
  2009年   978篇
  2008年   892篇
  2007年   882篇
  2006年   934篇
  2005年   784篇
  2004年   591篇
  2003年   548篇
  2002年   558篇
  2001年   526篇
  2000年   444篇
  1999年   529篇
  1998年   368篇
  1997年   346篇
  1996年   348篇
  1995年   283篇
  1994年   257篇
  1993年   160篇
  1992年   125篇
  1991年   91篇
  1990年   73篇
  1989年   66篇
  1988年   50篇
  1987年   34篇
  1986年   20篇
  1985年   15篇
  1984年   8篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1980年   9篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
891.
Cervical cancer remains a major problem in women''s health worldwide. In this research, a novel biodegradable d-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) (TPGS-b-(PCL-ran-PGA)) nanoparticle (NP) was developed as a co-delivery system of docetaxel and endostatin for the synergistic treatment of cervical cancer. Docetaxel-loaded TPGS-b-(PCL-ran-PGA) NPs were prepared and further modified by polyethyleneimine for coating plasmid pShuttle2-endostatin. All NPs were characterized in size, surface charge, morphology, and in vitro release of docetaxel and pDNA. The uptake of coumarin 6-loaded TPGS-b-(PCL-ran-PGA)/PEI-pDsRED by HeLa cells was observed via fluorescent microscopy and confocal laser scanning microscopy. Endostatin expression in HeLa cells transfected by TPGS-b-(PCL-ran-PGA)/PEI-pShuttle2-endostatin NPs was detected using Western blot analysis, and the cell viability of different NP-treated HeLa cells was determined by MTT assay. The HeLa cells from the tumor model, nude mice, were treated with various NPs including docetaxel-loaded-TPGS-b-(PCL-ran-PGA)/PEI-endostatin NPs, and their survival time, tumor volume and body weight were monitored during regimen process. The tumor tissue histopathology was analyzed using hematoxylin and eosin staining, and microvessel density in tumor tissue was evaluated immunohistochemically. The results showed that the TPGS-b-(PCL-ran-PGA)/PEI NPs can efficiently and simultaneously deliver both coumarin-6 and plasmids into HeLa cells, and the expression of endostatin was verified via Western blot analysis. Compared with control groups, the TPGS-b-(PCL-ran-PGA)/PEI-pShuttle2-endostatin NPs significantly decreased the cell viability of HeLa cells (p < 0.01), inhibited the growth of tumors, and even eradicated the tumors. The underlying mechanism is attributed to synergistic anti-tumor effects by the combined use of docetaxel, endostatin, and TPGS released from NPs. The TPGS-b-(PCL-ran-PGA) NPs could function as multifunctional carrier for chemotherapeutic drugs and genetic material delivery, and offer considerable potential as an ideal candidate for in vivo cancer therapy.  相似文献   
892.
Polyimide microspheres were prepared via non‐aqueous emulsion polymerization by using pyromellitic dianhydride (PMDA) as anhydride monomer and 2,2‐bis(4‐(4‐aminophenoxy)phenyl)propane as amine monomer. The polyimide microspheres were well characterized by Fourier transform infrared spectroscopy, SEM and laser particle size analyzer. They were spherical in shape and monodisperse and their size was 31–33 μm. Polyimide mixtures formed by polyimide microspheres as fillers and polyimide composed of pyromellitic and dianhydride 4,4′‐oxydianiline (ODA) as matrix were investigated with regard to thermal properties, dielectric properties and mechanical properties. With 10%–50% polyimide microspheres in the polyimide mixtures, the dielectric constants were 2.26–2.48 (1 MHz) and the loss tangents were 0.00663–0.00857 (1 MHz), which were both significantly lower than the values for ODA‐PMDA polyimide. The decomposition temperature and glass transition temperature were above 440 and 290 °C. The polyimide mixtures possessed excellent thermal resistance. When the percentage of polyimide microsphere addition was 30%, the polyimide mixtures had the largest tensile strength (128.50 MPa) and elongation at break (9.01%). These results indicate that the polyimide microspheres were used as both low dielectric fillers and reinforcing fillers. © 2020 Society of Chemical Industry  相似文献   
893.
The strategies for nanosol from metal alkoxide have enabled production of ultratransparent and mechanically robust polymer nanocomposites at extremely high loading. Herein, a simple approach to fabricate high‐performance polyurethane‐based nanocomposites via unmodified boehmite nanoparticles is reported. Evaluating their physical properties, the uniform dispersion of boehmite in the matrix caused nanocomposites retains ultrahigh transparency. Hydrogen bonding and intermolecular entanglement between boehmite and polyurethane brings about the mechanical properties of the nanocomposites material enhanced, i.e., strength, stiffness, and toughness. Optimized strength, stiffness, and toughness of Boehmite/Cationic waterborne polyurethane at 40 wt% (BNC40) are up to 58.1 MPa, 1096.7 MPa, 249.5 MJ m?3, respectively. Furthermore, the feasibility and mechanism of polymer strengthening and toughening by inorganic rigid nanoparticles is explored from the aspects of crystallinity and micromorphology.  相似文献   
894.
ABSTRACT

The thermoplastic and low dielectric constants polyimides were introduced. The polyimides were prepared by pyromellitic dianhydride (PMDA) or 4,4?-(4,4?-Isopropylidenediphenoxy)diphthalic anhydride (BPADA) as anhydride monomer and 4,4?-oxydianiline (ODA) or 2,2-bis(4-(4-aminephenoxy)phenyl)propane (BAPP) as amine monomer. The polyimides were well characterized by FT-IR, thermogravimetric analysis, dynamic thermomechanical analysis, dielectric measurement, and tensile test. The dielectric constants were 2.32–2.95 compared with 3.10 of ODA-PMDA polyimide, while partly polyimides were thermoplastic. The results indicated anhydride monomers, containing lateral methyl groups, made polyimides become thermoplastic. The results of molecular simulations via Materials Studio also proved this conclusion.  相似文献   
895.
The effects of diacylglycerols rich in medium‐ and long‐chain fatty acids (MLCD) on the crystallization of hydrogenated palm oil (HPO) and formation of 10% water‐in‐oil (W/O) emulsion are studied, and compared with the common surfactants monostearoylglycerol (MSG) and polyglycerol polyricinoleate (PGPR). Polarized light microscopy reveals that emulsions made with MLCD form crystals around dispersed water droplets and promotes HPO crystallization at the oil‐water interface. Similar behavior is also observed in MSG‐stabilized emulsions, but is absent from emulsions made with PGPR. The large deformation yield value of the test W/O emulsion is increased four‐fold versus those stabilized via PGPR due to interfacial crystallization of HPO. However, there are no large differences in droplet size, solid fat content (SFC), thermal behavior or polymorphism to account for these substantial changes, implying that the spatial distribution of the HPO crystals within the crystal network is the driving factor responsible for the observed textural differences. MLCD‐covered water droplets act as active fillers and interact with surrounding fat crystals to enhance the rigidity of emulsion. This study provides new insights regarding the use of MLCD in W/O emulsions as template for interfacial crystallization and the possibility of tailoring their large deformation behavior. Practical Applications: MLCD is applied in preparing W/O emulsion. It is found that MLCD forms unique interfacial Pickering crystals around water droplets, which promote the surface‐inactive HPO nucleation at the oil‐water interface. Thus MLCD‐covered water droplets act as active fillers and interact with surrounding fat crystals, which can greatly enhance the rigidity of emulsion. This observation would provide a theoretical reference and practical basis for the application of the MLCD with appreciable nutritional properties in lipid‐rich products such as whipped cream, shortenings margarine, butter and ice cream, so as to substitute hydrogenated oil. MLCD‐stabilized emulsions can also be explored for the development of novel confectionery products, lipsticks, or controlled release matrices.  相似文献   
896.
In China, Camellia oleifera oil (COO) is not only a common edible oil but also a traditional remedy widely applied to ameliorate a variety of illnesses associated with inflammation, such as mouth ulcers, thrush, eczema, etc. However, there has been a lack of relevant biological research on the anti-inflammatory capacity of COO, and the specific bioactive lipid phytochemicals contributing to the anti-inflammatory effect need further research. In this study, the RAW 264.7 macrophages model was used to investigate the anti-inflammatory capacity of COO. Our data showed that 33–200 μg/mL COO markedly inhibited the lipopolysaccharide lipopolysaccharide (LPS)-stimulated nitric oxide (NO.) secretion via the suppression of Nos2 and Cox-2 expression. The enzyme immunoassay confirmed that COO also exhibited a strong suppressive effect on the expression of proinflammatory cytokines such as Tnf-α and Il-6. To further explore the correlation between the anti-inflammatory effects and the lipid phytochemicals in COO, 10 samples were collected and screened for their chemical compositions. It was interestingly demonstrated that the polyphenol extracts of COO play a vital role in its anti-inflammatory properties. In addition, an oil-in-water (O/W) emulsion-based system was also developed to deliver the liposoluble COO into the cells, and the feasibility of this system was confirmed. Our research confirms the anti-inflammatory potential of COO and highlights that the main functional ingredient is polyphenol extracts. This may provide a scientific basis for the comprehensive utilization and development of COO and related functional foods.  相似文献   
897.
Porous fibers are widely used in catalysis chemistry and hydrogen storage but are rarely used in structural ceramics. In this study, spark plasma sintering was used to prepare an ultrafine porous boron nitride nanofiber-toughened WC composite for the first time. The obtained WC-0.05 wt% ultrafine porous boron nitride nanofiber composites exhibited better properties (ie, a 2.3% increase in hardness and a 19.6% increase in fracture toughness) compared to those of the pure WC specimen. The fiber porosity improved the second phase-WC matrix microstructural combination. The described approach is a novel preparation method for the WC composites. Furthermore, a new toughening mechanism, which is based on “pinning and stretching”, was determined. These findings suggest that porous boron nitride fibers can be considered to be second phases for toughening the WC composites.  相似文献   
898.
Tetra-valent manganese (Mn4+) has been regarded as an efficient non-rare-earth red-light emitting ion, which has stimulated continued search of robust hosts and efficient synthetic methods to stabilize Mn4+ centers with strong photoluminescence. In this work, we demonstrate a facile synthetic method for Mn4+ doped glass-ceramic (GC) based on crystallization-induced oxidation state change in an oxide glass. The parent glass with a formula of LiNaGe4O9 is fabricated by melt-quenching and crystallization is induced by thermal treatment in air. Oxidation of Mn2+ in glass to Mn4+ in the GC is confirmed by both optical spectroscopy and electron paramagnetic resonance (EPR) measurements. After thermal treatment, the characteristic reddish photoluminescence (PL) of Mn2+ in the glass centered at 611 nm disappears and a strong photoluminescence peak at 660 nm attributed to Mn4+ is observed. The conversion to Mn4+ after crystallization in the examined system may have strong implications for synthesis of Mn4+ doped phosphors which always requires rigorous control of the redox equilibrium during synthesis.  相似文献   
899.
It has been an urgent need for developing a new bright long-wave emitting phosphor to improve the color rendering index (CRI) of white light-emitting diodes (WLEDs). Here, based on the concept of oxygen vacancy-induced long-wave emission by Bi3+ doping, we selected BaSrGa4O8 as the matrix, which has a low-dimensional chain structure that can produce enough oxygen vacancies. After the introduction of Bi3+, orange emission was successfully achieved. To further improve the luminescence efficiency, the system of BaSrGa4O8:Bi3+,K+ was designed. Interestingly, although significant emission enhancement was obtained, the material showed reduced absorption with increased oxygen vacancies. More detailed experimental evidences confirm that oxygen vacancies can activate Bi3+ to achieve long-wave emission. Our results provide a new way to design Bi3+-based long-wave emitting phosphors with low-dimensional crystal structure. Finally, a WLED device containing BaSrGa4O8:Bi3+,K+ was fabricated and exhibited an enhanced CRI, which shows a promising application in WLEDs.  相似文献   
900.
In this paper, we study the influence of Cr3+ on yellowish-green upconversion (UC) emission and the energy transfer (ET) of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 (SZNL) zinc silicate glasses under excitation of the 980 nm laser diode (LD). The influence of Cr3+ on enhancing the red UC emission of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 zinc silicate glasses under the excitation of 980nm LD was also investigated. The ET processes between Yb3+, Cr3+, and Er3+, together with the combination of Yb3+-Cr3+-Er3+, which led to the green UC emission intensity of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 zinc silicate glasses bands centered at ~546 nm have been significantly enhanced. By increasing the concentration of Cr3+ from 0 up to 5 mol.%, we can locate the Commission Internationale de l'éclairage (CIE) 1931 (x; y) chromaticity coordinates for UC emissions of Er3+/Cr3+/Yb3+ tri-doped in the central position of the yellowish-green color region of CIE 1931 chromaticity diagram. Besides, the ET processes between the Yb3+, Cr3+, and Er3+ are also proposed and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号