首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   26篇
综合类   1篇
化学工业   32篇
金属工艺   2篇
机械仪表   10篇
建筑科学   1篇
能源动力   9篇
轻工业   13篇
无线电   33篇
一般工业技术   40篇
冶金工业   3篇
自动化技术   11篇
  2023年   7篇
  2022年   3篇
  2021年   9篇
  2020年   7篇
  2019年   4篇
  2018年   19篇
  2017年   12篇
  2016年   12篇
  2015年   14篇
  2014年   11篇
  2013年   13篇
  2012年   10篇
  2011年   16篇
  2010年   4篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
排序方式: 共有155条查询结果,搜索用时 140 毫秒
151.
Herein, the synthesis of Cu3(HAB)x(TATHB)2-x (HAB: hexaaminobenzene, TATHB: triaminotrihydroxybenzene) is reported. Synthetic improvement of Cu3(TATHB)2 leads to a more crystalline framework with higher electrical conductivity value than previously reported. The improved crystallinity and analogous structure between TATHB and HAB enable the synthesis of Cu3(HAB)x(TATHB)2-x with ligand compositions precisely controlled by precursor ratios. The electrical conductivity is tuned from 4.2 × 10−8 to 2.9 × 10−5 S cm−1 by simply increasing the nitrogen content in the crystal lattice. Furthermore, computational calculation supports that the solid solution facilitates the band structure tuning. It is envisioned that the findings not only shed light on the ligand-dependent structure–property relationship but create new prospects in synthesizing multicomponent electrically conductive metal-organic frameworks (MOFs) for tailoring optoelectronic device applications.  相似文献   
152.
The development of highly tribopositive materials is crucial for realizing high-performance triboelectric nanogenerators. In this study, a novel protocol to maximize the number of non-bonding electrons with local dipoles for designing highly tribopositive materials is introduced, and nitrogen-based dimethylol urea, diazolidinyl urea, and imidazolidinyl urea as promising tribopositive materials are suggested. The mechanism by which nitrogen-based materials provide highly tribopositive properties is investigated using calculations based on density functional theory. Highly electronegative atoms, such as nitrogen and oxygen, attract electrons from neighboring atoms, resulting in the formation of negative local dipoles in the highest occupied molecular orbital band composed of non-bonding electrons, thereby creating an electron-donating environment. The proposed design protocol is confirmed by quantitatively investigating the triboelectric properties of nitrogen-based materials, and analyzing the charge transfer characteristics of dimethylol urea based on dipole interactions.  相似文献   
153.
154.
A feasible nanoscale framework of heterogeneous plasmonic materials and proper surface engineering can enhance photoelectrochemical (PEC) water-splitting performance owing to increased light absorbance, efficient bulk carrier transport, and interfacial charge transfer. This article introduces a new magnetoplasmonic (MagPlas) Ni-doped Au@FexOy nanorods (NRs) based material as a novel photoanode for PEC water-splitting. A two stage procedure produces core–shell Ni/Au@FexOy MagPlas NRs. The first-step is a one-pot solvothermal synthesis of Au@FexOy. The hollow FexOy nanotubes (NTs) are a hybrid of Fe2O3 and Fe3O4, and the second-step is a sequential hydrothermal treatment for Ni doping. Then, a transverse magnetic field-induced assembly is adopted to decorate Ni/Au@FexOy on FTO glass to be an artificially roughened morphologic surface called a rugged forest, allowing more light absorption and active electrochemical sites. Then, to characterize its optical and surface properties, COMSOL Multiphysics simulations are carried out. The core–shell Ni/Au@FexOy MagPlas NRs increase photoanode interface charge transfer to 2.73 mAcm−2 at 1.23 V RHE. This improvement is made possible by the rugged morphology of the NRs, which provide more active sites and oxygen vacancies as the hole transfer medium. The recent finding may provide light on plasmonic photocatalytic hybrids and surface morphology for effective PEC photoanodes.  相似文献   
155.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号