首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1935篇
  免费   90篇
  国内免费   4篇
电工技术   22篇
综合类   1篇
化学工业   413篇
金属工艺   25篇
机械仪表   31篇
建筑科学   122篇
矿业工程   3篇
能源动力   80篇
轻工业   120篇
水利工程   19篇
石油天然气   12篇
无线电   179篇
一般工业技术   311篇
冶金工业   285篇
原子能技术   7篇
自动化技术   399篇
  2023年   10篇
  2022年   22篇
  2021年   28篇
  2020年   22篇
  2019年   21篇
  2018年   35篇
  2017年   39篇
  2016年   37篇
  2015年   47篇
  2014年   69篇
  2013年   130篇
  2012年   97篇
  2011年   138篇
  2010年   99篇
  2009年   102篇
  2008年   104篇
  2007年   91篇
  2006年   111篇
  2005年   85篇
  2004年   92篇
  2003年   68篇
  2002年   67篇
  2001年   32篇
  2000年   26篇
  1999年   32篇
  1998年   27篇
  1997年   24篇
  1996年   35篇
  1995年   25篇
  1994年   19篇
  1993年   30篇
  1992年   25篇
  1991年   21篇
  1990年   14篇
  1989年   20篇
  1988年   7篇
  1987年   12篇
  1986年   9篇
  1985年   18篇
  1984年   16篇
  1983年   6篇
  1982年   17篇
  1981年   10篇
  1980年   7篇
  1979年   12篇
  1978年   8篇
  1977年   7篇
  1976年   13篇
  1975年   7篇
  1970年   7篇
排序方式: 共有2029条查询结果,搜索用时 15 毫秒
71.
72.
73.
The Protein Processor Associative Memory (PPAM) is a novel hardware architecture for a distributed, decentralised, robust and scalable, bidirectional, hetero-associative memory, that can adapt online to changes in the training data. The PPAM uses the location of data in memory to identify relationships and is therefore fundamentally different from traditional processing methods that tend to use arithmetic operations to perform computation. This paper presents the hardware architecture and details a sample digital logic implementation with an analysis of the implications of using existing techniques for such hardware architectures. It also presents the results of implementing the PPAM for a robotic application that involves learning the forward and inverse kinematics. The results show that, contrary to most other techniques, the PPAM benefits from higher dimensionality of data, and that quantisation intervals are crucial to the performance of the PPAM.  相似文献   
74.
75.
A flow cytometric method (RAPID-B™) with detection sensitivity of one viable cell of Escherichia coli serotype O157:H7 in fresh spinach (Spinacia oleracea) was developed and evaluated. The major impediment to achieving this performance was mistaking autofluorescing spinach particles for tagged target cells. Following a 5 h non-selective enrichment, artificially inoculated samples were photobleached, using phloxine B as a photosensitizer. Samples were centrifuged at high speed to concentrate target cells, then gradient centrifuged to separate them from matrix debris. In external laboratory experiments, RAPID-B and the reference method both correctly detected E. coli O157:H7 at inoculations of ca. 15 cells. In a follow-up study, after 4 cell inoculations of positives and 6 h enrichment, RAPID-B correctly identified 92% of 25 samples. The RAPID-B method limit of detection (LOD) was one cell in 25 g. It proved superior to the reference method (which incorporated real time-PCR, selective enrichment, and culture plating elements) in accuracy and speed.  相似文献   
76.
77.
Partially acetylated cellulose nanofibers (CNF) were chemically extracted from sisal fibers and the performance of those CNF as nanofillers for polylactide (PLA) for food packaging applications was evaluated. Three PLA nanocomposites; PLA/CNF (cellulose nanofibers), PLA/CNC (nanocrystalline cellulose), and PLA/C30B (CloisiteTM 30B, an organically modified montmorillonite clay) were prepared and their properties were evaluated. It was found that CNF reinforced composites showed a larger decrease on oxygen transmission rate (OTR) than the clay‐based composites; (PLA/CNF 1% nanocomposite showed a 63% of reduction at 23°C and 50% RH while PLA/C30B 1% showed a 26% decrease) and similar behavior on terms of water vapor barrier properties with 46 and 43%, respectively of decrease on water vapor transmission rate at 23°C and 50% RH (relative humidity). In terms of mechanical and thermomechanical properties, CNF‐based nanocomposites showed better performance than clay‐based composites without affecting significantly the optical transparency. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43257.  相似文献   
78.
Triaxial residual tensile stresses resulting after cooling a 3D woven composite from the curing temperature cause cracking in the resin pockets for weave architectures that have high through‐the‐thickness constraint. We show how curing cycle modifications can reduce the hydrostatic tensile stress generated by thermal mismatch during cooling of Hexcel RTM6 epoxy resin constrained in a quartz tube which simulates extreme constraint in a composite. The modified curing schedule consists of a high temperature cure to just before the glass transition, a lower temperature hold that takes the resin through the glass transition thereby freezing in the zero stress state, followed by high temperature cure to bring the resin to full conversion. We show that this process is sensitive to heating rates and can reduce the zero stress state of non‐toughened RTM6 resin to a temperature similar to a commercial rubber‐toughened resin, Cycom PR520. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43373.  相似文献   
79.
Ferroelectric materials are well‐suited for a variety of applications because they can offer a combination of high performance and scaled integration. Examples of note include piezoelectrics to transform between electrical and mechanical energies, capacitors used to store charge, electro‐optic devices, and nonvolatile memory storage. Accordingly, they are widely used as sensors, actuators, energy storage, and memory components, ultrasonic devices, and in consumer electronics products. Because these functional properties arise from a noncentrosymmetric crystal structure with spontaneous strain and a permanent electric dipole, the properties depend upon physical and electrical boundary conditions, and consequently, physical dimension. The change in properties with decreasing physical dimension is commonly referred to as a size effect. In thin films, size effects are widely observed, whereas in bulk ceramics, changes in properties from the values of large‐grained specimens is most notable in samples with grain sizes below several micrometers. It is important to note that ferroelectricity typically persists to length scales of about 10 nm, but below this point is often absent. Despite the stability of ferroelectricity for dimensions greater than ~10 nm, the dielectric and piezoelectric coefficients of scaled ferroelectrics are suppressed relative to their bulk counterparts, in some cases by changes up to 80%. The loss of extrinsic contributions (domain and phase boundary motion) to the electromechanical response accounts for much of this suppression. In this article, the current understanding of the underlying mechanisms for this behavior in perovskite ferroelectrics is reviewed. We focus on the intrinsic limits of ferroelectric response, the roles of electrical and mechanical boundary conditions, grain size and thickness effects, and extraneous effects related to processing. In many cases, multiple mechanisms combine to produce the observed scaling effects.  相似文献   
80.
Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are used in many engineering applications such as vehicle and industrial waste-heat recovery systems to provide electrical power, improve operating efficiency and reduce costs. State-of-art TEG manufacturing is based on prefabricated materials and a labor-intensive process involving soldering, epoxy bonding, and mechanical clamping for assembly. This reduces their durability and raises costs. Additive manufacturing technologies, such as thermal spray, present opportunities to overcome these challenges. In this work, TEGs have been fabricated for the first time using thermal spray technology and laser micromachining. The TEGs are fabricated directly onto engineering component surfaces. First, current fabrication techniques of TEGs are presented. Next, the steps required to fabricate a thermal spray-based TEG module, including the formation of the metallic interconnect layers and the thermoelectric legs are presented. A technique for bridging the air gap between two adjacent thermoelectric elements for the top layer using a sacrificial filler material is also demonstrated. A flat 50.8 mm × 50.8 mm TEG module is fabricated using this method and its performance is experimentally characterized and found to be in agreement with expected values of open-circuit voltage based on the materials used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号