首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4757篇
  免费   275篇
  国内免费   8篇
电工技术   59篇
综合类   8篇
化学工业   947篇
金属工艺   55篇
机械仪表   75篇
建筑科学   178篇
矿业工程   5篇
能源动力   162篇
轻工业   328篇
水利工程   54篇
石油天然气   35篇
无线电   392篇
一般工业技术   1196篇
冶金工业   597篇
原子能技术   13篇
自动化技术   936篇
  2024年   13篇
  2023年   60篇
  2022年   96篇
  2021年   140篇
  2020年   115篇
  2019年   122篇
  2018年   126篇
  2017年   139篇
  2016年   162篇
  2015年   134篇
  2014年   188篇
  2013年   335篇
  2012年   309篇
  2011年   388篇
  2010年   295篇
  2009年   281篇
  2008年   308篇
  2007年   246篇
  2006年   217篇
  2005年   188篇
  2004年   152篇
  2003年   134篇
  2002年   128篇
  2001年   66篇
  2000年   61篇
  1999年   60篇
  1998年   50篇
  1997年   45篇
  1996年   50篇
  1995年   44篇
  1994年   40篇
  1993年   36篇
  1992年   39篇
  1991年   20篇
  1990年   27篇
  1989年   14篇
  1988年   14篇
  1987年   29篇
  1986年   17篇
  1985年   29篇
  1984年   13篇
  1983年   6篇
  1982年   13篇
  1981年   20篇
  1980年   6篇
  1977年   9篇
  1976年   11篇
  1975年   7篇
  1974年   6篇
  1973年   6篇
排序方式: 共有5040条查询结果,搜索用时 15 毫秒
41.
This study demonstrates that third-person perceptions regarding the influence of media coverage of peripheral towns indirectly affect the desire to consider moving. It is argued that regardless of whether people's perceptions of where they live are really shaped by media coverage, if people believe others are affected by this coverage more than they are, they are more likely to consider relocation. We investigated whether the perceived stigmatization of peripheral development towns in Israel has an impact on the desire of their residents to stay or leave, over and above the disaffection with actual living conditions in these communities. Using structural equation modeling ( N = 472), we show that third-person estimations indeed influence both perceptions and behavioral intentions.  相似文献   
42.
The therapeutic efficacy of photodynamic therapy is limited by the ability of light to penetrate tissues. Due to this limitation, Cerenkov luminescence (CL) from radionuclides has recently been proposed as an alternative light source in a strategy referred to as Cerenkov radiation-induced therapy (CRIT). Semiconducting polymer nanoparticles (SPNs) have ideal optical properties, such as large absorption cross-sections and broad absorbance, which can be utilized to harness the relatively weak CL produced by radionuclides. SPNs can be doped with photosensitizers and have ≈100% energy transfer efficiency by multiple energy transfer mechanisms. Herein, an optimized photosensitizer-doped SPN is investigated as a nanosystem to harness and amplify CL for cancer theranostics. It is found that semiconducting polymers significantly amplify CL energy transfer efficiency. Bimodal positron emission tomography (PET) and optical imaging studies show high tumor uptake and retention of the optimized SPNs when administered intravenously or intratumorally. Lastly, it is found that photosensitizer-doped SPNs have excellent potential as a cancer theranostics nanosystem in an in vivo tumor therapy study. This study shows that SPNs are ideally suited to harness and amplify CL for cancer theranostics, which may provide a significant advancement for CRIT that are unabated by tissue penetration limits.  相似文献   
43.
For a transaction processing system to operate effectively and efficiently in cloud environments, it is important to distribute huge amount of data while guaranteeing the ACID (atomic, consistent, isolated, and durable) properties. Moreover, database partition and migration tools can help transplanting conventional relational database systems to the cloud environment rather than rebuilding a new system. This paper proposes a database distribution management (DBDM) system, which partitions or replicates the data according to the transaction behaviors of the application system. The principle strategy of DBDM is to keep together the data used in a single transaction, and thus, avoiding massive transmission of records in join operations. The proposed system has been implemented successfully. The preliminary experiments show that the DBDM performs the database partition and migration effectively. Also, the DBDM system is modularly designed to adapt to different database management system (DBMS) or different partition algorithms.  相似文献   
44.
We have measured the mechanical properties of coagulation‐spun polymer–nanotube composite fibers. Both the fiber modulus, Y, and strength, σB, scale linearly with volume fraction, Vf, up to Vf ~10%, after which these properties remain constant. We measured dY/dVf = 254 GPa and dσB/dVf = 2.8 GPa in the linear region. By drawing fibers with Vf < 10% to a draw ratio of ~60%, we can increase these values to dY/dVf = 600 GPa and dσB/dVf = 7 GPa. Raman measurements show the Herman's orientation parameter, S, to increase with drawing, indicating that significant nanotube alignment occurs. Raman spectroscopy also shows that the nanotube effective modulus, YEff, also increases with drawing. We have calculated an empirical relationship between the nanotube orientation efficiency factor, ηo, and S. This allows us to fit the data for YEff versus ηo, showing that the fiber modulus scales linearly with ηo, as predicted theoretically by Krenchel. From the fit, we estimate the nanotube modulus to be; YNT = 480 GPa. Finally, we show that the fiber strength also scales linearly with ηo, giving an effective interfacial stress transfer of τ = 40 MPa and a nanotube critical length of lc=1250 nm. This work demonstrates the validity of the Cox‐Krenchel rule of mixtures and shows that continuum theory still applies at the near‐molecular level.  相似文献   
45.
The thermal conductivity of gas‐permeated single‐walled carbon nanotube (SWCNT) aerogel (8 kg m?3 density, 0.0061 volume fraction) is measured experimentally and modeled using mesoscale and atomistic simulations. Despite the high thermal conductivity of isolated SWCNTs, the thermal conductivity of the evacuated aerogel is 0.025 ± 0.010 W m?1 K?1 at a temperature of 300 K. This very low value is a result of the high porosity and the low interface thermal conductance at the tube–tube junctions (estimated as 12 pW K?1). Thermal conductivity measurements and analysis of the gas‐permeated aerogel (H2, He, Ne, N2, and Ar) show that gas molecules transport energy over length scales hundreds of times larger than the diameters of the pores in the aerogel. It is hypothesized that inefficient energy exchange between gas molecules and SWCNTs gives the permeating molecules a memory of their prior collisions. Low gas‐SWCNT accommodation coefficients predicted by molecular dynamics simulations support this hypothesis. Amplified energy transport length scales resulting from low gas accommodation are a general feature of CNT‐based nanoporous materials.  相似文献   
46.
High‐performance adhesives require mechanical properties tuned to demands of the surroundings. A mismatch in stiffness between substrate and adhesive leads to stress concentrations and fracture when the bonding is subjected to mechanical load. Balancing material strength versus ductility, as well as considering the relationship between adhesive modulus and substrate modulus, creates stronger joints. However, a detailed understanding of how these properties interplay is lacking. Here, a biomimetic terpolymer is altered systematically to identify regions of optimal bonding. Mechanical properties of these terpolymers are tailored by controlling the amount of a methyl methacrylate stiff monomer versus a similar monomer containing flexible poly(ethylene glycol) chains. Dopamine methacrylamide, the cross‐linking monomer, is a catechol moiety analogous to 3,4‐dihydroxyphenylalanine, a key component in the adhesive proteins of marine mussels. Bulk adhesion of this family of terpolymers is tested on metal and plastic substrates. Incorporating higher amounts of poly(ethylene glycol) into the terpolymer introduces flexibility and ductility. By taking a systematic approach to polymer design, the region in which material strength and ductility are balanced in relation to the substrate modulus is found, thereby yielding the most robust joints.  相似文献   
47.
Organic mixed conductors are increasingly employed in electrochemical devices operating in aqueous solutions that leverage simultaneous transport of ions and electrons. Indeed, their mode of operation relies on changing their doping (oxidation) state by the migration of ions to compensate for electronic charges. Nevertheless, the structural and morphological changes that organic mixed conductors experience when ions and water penetrate the material are not fully understood. Through a combination of electrochemical, gravimetric, and structural characterization, the effects of water and anions with a hydrophilic conjugated polymer are elucidated. Using a series of sodium‐ion aqueous salts of varying anion size, hydration shells, and acidity, the links between the nature of the anion and the transport and structural properties of the polymer are systematically studied. Upon doping, ions intercalate in the crystallites, permanently modifying the lattice spacings, and residual water swells the film. The polymer, however, maintains electrochemical reversibility. The performance of electrochemical transistors reveals that doping with larger, less hydrated, anions increases their transconductance but decreases switching speed. This study highlights the complexity of electrolyte‐mixed conductor interactions and advances materials design, emphasizing the coupled role of polymer and electrolyte (solvent and ion) in device performance.  相似文献   
48.
The fabrication of 2D systems for electronic devices is not straightforward, with top‐down low‐yield methods often employed leading to irregular nanostructures and lower quality devices. Here, a simple and reproducible method to trigger self‐assembly of arrays of high aspect‐ratio chiral copper heterostructures templated by the structural anisotropy in black phosphorus (BP) nanosheets is presented. Using quantitative atomic resolution aberration‐corrected scanning transmission electron microscopy imaging, in situ heating transmission electron microscopy and electron energy‐loss spectroscopy arrays of heterostructures forming at speeds exceeding 100 nm s?1 and displaying long‐range order over micrometers are observed. The controlled instigation of the self‐assembly of the Cu heterostructures embedded in BP is achieved using conventional electron beam lithography combined with site specific placement of Cu nanoparticles. Density functional theory calculations are used to investigate the atomic structure and suggest a metallic nature of the Cu heterostructures grown in BP. The findings of this new hybrid material with unique dimensionality, chirality, and metallic nature and its triggered self‐assembly open new and exciting opportunities for next generation, self‐assembling devices.  相似文献   
49.
The design of polyelectrolyte multilayers (PEMs) that can be prefabricated on an elastomeric stamp and mechanically transferred onto biomedically‐relevant soft materials, including medical‐grade silicone elastomers (E’~450–1500 kPa; E’‐elastic modulus) and the dermis of cadaver skin (E’~200–600 kPa), is reported. Whereas initial attempts to stamp PEMs formed from poly(allylamine hydrochloride) and poly(acrylic acid) resulted in minimal transfer onto soft materials, we report that integration of micrometer‐sized beads into the PEMs (thicknesses of 6–160 nm) led to their quantitative transfer within 30 seconds of contact at a pressure of ~196 kPa. To demonstrate the utility of this approach, PEMs were impregnated with a range of loadings of silver‐nanoparticles and stamped onto the dermis of human cadaver skin (a wound‐simulant) that was subsequently incubated with bacterial cultures. Skin dermis stamped with PEMs that released 0.25 ± 0.01 μg cm?2 of silver ions caused a 6 log10 reduction in colony forming units of Staphylococcus epidermidis and Pseudomonas aeruginosa within 12 h. Significantly, this level of silver release is below that which is cytotoxic to NIH 3T3 mouse fibroblast cells. Overall, this study describes a general and facile approach for the functionalization of biomaterial surfaces without subjecting them to potentially deleterious processing conditions.  相似文献   
50.
Phase‐change alloys are the functional materials at the heart of an emerging digital‐storage technology. The GeTe‐Sb2Te3 pseudo‐binary systems, in particular the composition Ge2Sb2Te5 (GST), are one of a handful of materials which meet the unique requirements of a stable amorphous phase, rapid amorphous‐to‐crystalline phase transition, and significant contrasts in optical and electrical properties between material states. The properties of GST can be optimized by doping with p‐block elements, of which Bi has interesting effects on the crystallization kinetics and electrical properties. A comprehensive simulational study of Bi‐doped GST is carried out, looking at trends in behavior and properties as a function of dopant concentration. The results reveal how Bi integrates into the host matrix, and provide insight into its enhancement of the crystallization speed. A straightforward explanation is proposed for the reversal of the charge‐carrier sign beyond a critical doping threshold. The effect of Bi on the optical properties of GST is also investigated. The microscopic insight from this study may assist in the future selection of dopants to optimize the phase‐change properties of GST, and also of other PCMs, and the general methods employed in this work should be applicable to the study of related materials, for example, doped chalcogenide glasses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号