首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75762篇
  免费   2916篇
  国内免费   754篇
电工技术   1770篇
技术理论   5篇
综合类   1316篇
化学工业   15027篇
金属工艺   3179篇
机械仪表   4647篇
建筑科学   2776篇
矿业工程   457篇
能源动力   2811篇
轻工业   5620篇
水利工程   611篇
石油天然气   1155篇
武器工业   155篇
无线电   10882篇
一般工业技术   14866篇
冶金工业   5328篇
原子能技术   966篇
自动化技术   7861篇
  2024年   866篇
  2023年   1016篇
  2022年   1371篇
  2021年   2237篇
  2020年   1877篇
  2019年   1979篇
  2018年   1964篇
  2017年   2059篇
  2016年   2474篇
  2015年   2055篇
  2014年   3020篇
  2013年   4255篇
  2012年   4534篇
  2011年   5288篇
  2010年   4012篇
  2009年   4076篇
  2008年   4004篇
  2007年   3324篇
  2006年   3253篇
  2005年   2910篇
  2004年   2330篇
  2003年   2239篇
  2002年   1999篇
  2001年   1708篇
  2000年   1732篇
  1999年   1709篇
  1998年   2281篇
  1997年   1630篇
  1996年   1359篇
  1995年   1057篇
  1994年   812篇
  1993年   691篇
  1992年   514篇
  1991年   467篇
  1990年   408篇
  1989年   366篇
  1988年   309篇
  1987年   218篇
  1986年   171篇
  1985年   165篇
  1984年   114篇
  1983年   75篇
  1982年   54篇
  1981年   57篇
  1980年   45篇
  1979年   40篇
  1978年   37篇
  1977年   47篇
  1976年   75篇
  1975年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
Bone absorption is necessary for the maintenance of bone homeostasis. An osteoclast (OC) is a monocyte–macrophage lineage cell that absorbs bone tissue. Extracellular signal-regulated kinases (ERKs) are known to play important roles in regulating OC growth and differentiation. In this study, we examined specific downstream signal pathways affected by ERK inhibition during OC differentiation. Our results showed that the ERK inhibitors PD98059 and U0126 increased receptor activator of NF-κB ligand (RANKL)-induced OC differentiation in RAW 264.7 cells, implying a negative role in OC differentiation. This is supported by the effect of ERK2-specific small interfering RNA on increasing OC differentiation. In contrast to our findings regarding the RAW 264.7 cells, the ERK inhibitors attenuated the differentiation of bone marrow-derived cells into OCs. The ERK inhibitors significantly increased the phosphorylation of adenosine 5′-monophosphate-activated protein kinase (AMPK) but not the activation of p38 MAPK, Lyn, and mTOR. In addition, while the ERK inhibition increased the expression of the RANKL receptor RANK, it decreased the expression of negative mediators of OC differentiation, such as interferon regulatory factor-8, B-cell lymphoma 6, and interferon-γ. These dichotomous effects of ERK inhibition suggest that while ERKs may play positive roles in bone marrow-derived cells, ERKs may also play negative regulatory roles in RAW 264.7 cells. These data provide important information for drug development utilizing ERK inhibitors in OC-related disease treatment.  相似文献   
53.
Xuebijing injection (XBJI) (comprising of five herbs) is a widely used traditional Chinese medicine for sepsis treatment. However, the bioactive components of XBJI and the mechanisms responsible for its sepsis-mitigating action have not been experimentally determined. One of the main bioactive compounds in XBJI—benzoylpaeoniflorin (BPF)—inhibits the expressions of key mediators of inflammation such as nuclear factor kappa B (NF-κB), cyclooxygenase-1 (COX-1), and COX-2. However, its effects on sepsis have not been determined yet. Therefore, here, we investigated the immunomodulatory effect of BPF on severely inflamed endothelial cells, THP-1 macrophages, peritoneal macrophages, and mice. Human umbilical vein endothelial cells (HUVECs) and THP-1-macrophages were activated using lipopolysaccharide (LPS) after pretreatment with BPF. Subsequently, changes in the expression profiles of pro-inflammatory molecules including inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were determined using quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis. Furthermore, we monitored the phosphorylation of NF-kB and mitogen-activated protein kinases (MAPKs) to determine their activation levels. Using the LPS-induced mouse model of sepsis, we studied the effects of BPF on inflammatory cytokine production, pulmonary histopathology, and survival rates. Finally, we evaluated whether BPF protects against cecal ligation and puncture (CLP)-induced sepsis, as it closely mimics human sepsis. BPF pretreatment inhibited LPS-induced increase in mRNA and protein levels of iNOS, TNF-α, and IL-6 in HUVECs and THP-1-macrophages. It also suppressed LPS-mediated phosphorylation of p65, p38, JNK, and ERK. Mice with LPS-induced-sepsis who were treated with BPF had lower serum levels of IL-6, TNF-α, IL-1β, CXCL1, and CXCL2 than the control mice treated with BPF. Histopathology revealed that BPF treatment alleviated LPS-induced lung damage. In addition, in mice given a lethal dose of LPS, BPF treatment showed a dose-dependent improvement in survival rates. BPF treatment dose-dependently inhibited the LPS-induced IL-6, TNF-α, and CXCL1 production in peritoneal macrophages. BPF treatment also dose-dependently improved the survival rates in mice with CLP-induced sepsis. These results show that BPF alleviates LPS-stimulated septic conditions and protects mice from CLP-induced sepsis. Our research marks BPF as a potential drug in the treatment of sepsis and various inflammatory diseases.  相似文献   
54.
Although tissue-type plasminogen activator was approved by the FDA for early reperfusion of occluded vessels, there is a need for an effective neuroprotective drug for stroke patients. In this study, we established tumor susceptibility gene (TSG)101-overexpressing human neural stem cells (F3.TSG) and investigated whether they showed enhanced secretion of exosomes and whether treatment with exosomes during reperfusion alleviated ischemia-reperfusion-mediated brain damage. F3.TSG cells secreted higher amounts of exosomes than the parental F3 cells. In N2A cells subjected to oxygen–glucose deprivation (OGD), treatment with exosomes or coculture with F3.TSG cells significantly attenuated lactate dehydrogenase release, the mRNA expression of proinflammatory factors, and the protein expression of DNA-damage-related proteins. In a middle cerebral artery occlusion (MCAO) rat model, treatment with exosomes, F3 cells, or F3.TSG cells after 2 h of occlusion followed by reperfusion reduced the infarction volume and suppressed inflammatory cytokines, DNA-damage-related proteins, and glial fibrillary acidic protein, and upregulated several neurotrophic factors. Thus, TSG101-overexpressing neural stem cells showed enhanced exosome secretion; exosome treatment protected against MCAO-induced brain damage via anti-inflammatory activities, DNA damage pathway inhibition, and growth/trophic factor induction. Therefore, exosomes and F3.TSG cells can affect neuroprotection and functional recovery in acute stroke patients.  相似文献   
55.
In this study, we tried to develop a FimH inhibitor that inhibits adhesion of enterohemorrhagic Escherichia coli (EHEC) on the epithelium of human intestine during the initial stage of infections. Using a T7 phage display method with a reference strain, EHEC EDL933, FimH was selected as an adherent lectin to GM1a and Gb3 glycans. In order to detect the ligand binding domain (LBD) of FimH, we used a docking simulation and found three binding site sequences of FimH, i.e., P1, P2, and P3. Among Gb3 mimic peptides, P2 was found to have the strongest binding strength. Moreover, in vitro treatment with peptide P2 inhibited binding activity in a concentration-dependent manner. Furthermore, we conducted confirmation experiments through several strains isolated from patients in Korea, EHEC NCCP15736, NCCP15737, and NCCP15739. In addition, we analyzed the evolutionary characteristics of the predicted FimH lectin-like adhesins to construct a lectin-glycan interaction (LGI). We selected 70 recently differentiated strains from the phylogenetic tree of 2240 strains with Shiga toxin in their genome. We can infer EHEC strains dynamically evolved but FimH was conserved during the evolution time according to the phylogenetic tree. Furthermore, FimH could be a reliable candidate of drug target in terms of evolution. We examined how pathogen lectins interact with host glycans early in infection in EDL933 as well as several field strains and confirmed that glycan-like peptides worked as an initial infection inhibitor.  相似文献   
56.
Aging causes a progressive decline in the structure and function of organs. With advancing age, an accumulation of senescent endothelial cells (ECs) contributes to the risk of developing vascular dysfunction and cardiovascular diseases, including hypertension, diabetes, atherosclerosis, and neurodegeneration. Senescent ECs undergo phenotypic changes that alter the pattern of expressed proteins, as well as their morphologies and functions, and have been linked to vascular impairments, such as aortic stiffness, enhanced inflammation, and dysregulated vascular tone. Numerous molecules and pathways, including sirtuins, Klotho, RAAS, IGFBP, NRF2, and mTOR, have been implicated in promoting EC senescence. This review summarizes the molecular players and signaling pathways driving EC senescence and identifies targets with possible therapeutic value in age-related vascular diseases.  相似文献   
57.
58.
The activation and degranulation of immune cells play a pivotal role in allergic inflammation, a pathological condition that includes anaphylaxis, pruritus, and allergic march-related diseases. In this study, trifuhalol A, a phlorotannin isolated from Agarum cribrosum, inhibited the degranulation of immune cells and the biosynthesis of IL-33 and IgE in differentiated B cells and keratinocytes, respectively. Additionally, trifuhalol A suppressed the IL-33 and IgE-mediated activation of RBL-2H3 cells through the regulation of the TAK1 and MK2 pathways. Hence, the effect of trifuhalol A on allergic inflammation was evaluated using a Compound 48/80-induced systemic anaphylaxis mouse model and a house dust mite (HDM)-induced atopic dermatitis (AD) mouse model. Trifuhalol A alleviated anaphylactic death and pruritus, which appeared as an early-phase reaction to allergic inflammation in the Compound 48/80-induced systemic anaphylaxis model. In addition, trifuhalol A improved symptoms such as itching, edema, erythema, and hyperkeratinization in HDM-induced AD mice as a late-phase reaction. Moreover, the expression of IL-33 and thymic stromal lymphopoietin, inflammatory cytokines secreted from activated keratinocytes, was significantly reduced by trifuhalol A administration, resulting in the reduced infiltration of immune cells into the skin and a reduction in the blood levels of IgE and IL-4. In summarizing the above results, these results confirm that trifuhalol A is a potential therapeutic candidate for the regulation of allergic inflammation.  相似文献   
59.
60.
Alcohol consumption is associated with an increased risk of several cancers, including oral/oropharyngeal squamous cell carcinoma (OSCC). Alcohol also enhances the progression and aggressiveness of existing cancers; however, its underlying molecular mechanism remains elusive. Especially, the local carcinogenic effects of alcohol on OSCC in closest contact with ingestion of alcohol are poorly understood. We demonstrated that chronic ethanol exposure to OSCC increased cancer stem cell (CSC) populations and their stemness features, including self-renewal capacity, expression of stem cell markers, ALDH activity, and migration ability. The ethanol exposure also led to a significant increase in aerobic glycolysis. Moreover, increased aerobic glycolytic activity was required to support the stemness phenotype of ethanol-exposed OSCC, suggesting a molecular coupling between cancer stemness and metabolic reprogramming. We further demonstrated that chronic ethanol exposure activated NFAT (nuclear factor of activated T cells) signaling in OSCC. Functional studies revealed that pharmacological and genetic inhibition of NFAT suppressed CSC phenotype and aerobic glycolysis in ethanol-exposed OSCC. Collectively, chronic ethanol exposure promotes cancer stemness and aerobic glycolysis via activation of NFAT signaling. Our study provides a novel insight into the roles of cancer stemness and metabolic reprogramming in the molecular mechanism of alcohol-mediated carcinogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号