首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53879篇
  免费   3055篇
  国内免费   157篇
电工技术   780篇
综合类   73篇
化学工业   11578篇
金属工艺   2274篇
机械仪表   3506篇
建筑科学   1177篇
矿业工程   28篇
能源动力   2275篇
轻工业   4158篇
水利工程   276篇
石油天然气   92篇
武器工业   2篇
无线电   8572篇
一般工业技术   11671篇
冶金工业   4346篇
原子能技术   730篇
自动化技术   5553篇
  2024年   27篇
  2023年   569篇
  2022年   727篇
  2021年   1560篇
  2020年   1145篇
  2019年   1282篇
  2018年   1543篇
  2017年   1529篇
  2016年   1908篇
  2015年   1412篇
  2014年   2276篇
  2013年   3318篇
  2012年   3555篇
  2011年   4253篇
  2010年   3059篇
  2009年   3206篇
  2008年   3045篇
  2007年   2378篇
  2006年   2209篇
  2005年   1886篇
  2004年   1717篇
  2003年   1666篇
  2002年   1471篇
  2001年   1230篇
  2000年   1116篇
  1999年   1040篇
  1998年   1720篇
  1997年   1140篇
  1996年   911篇
  1995年   628篇
  1994年   511篇
  1993年   477篇
  1992年   337篇
  1991年   327篇
  1990年   290篇
  1989年   258篇
  1988年   229篇
  1987年   178篇
  1986年   132篇
  1985年   144篇
  1984年   107篇
  1983年   73篇
  1982年   45篇
  1981年   51篇
  1980年   46篇
  1979年   44篇
  1978年   36篇
  1977年   48篇
  1976年   75篇
  1975年   31篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
981.
High-temperature wear characteristics between plasma spray coated piston rings and cylinder liners were investigated to find the optimum combination of coating materials using the disc-on-plate reciprocating wear test in dry conditions. The disc and plate represented the piston ring and the cylinder liner, respectively. Coating materials studied were Cr2O3-NiCr, Cr2O3-NiCr-Mo, and Cr3C2-NiCr-Mo. Plasma spray conditions for the coating materials were established adjusting stand-off distance to obtain a coating with a porosity content of ∼5%. It was found that a dissimilar coating combination of Cr2O3-NiCr-Mo and Cr3C2-NiCr-Mo provided the best antiwear performance. The addition of molybdenum was found to be beneficial to improve the wear resistance of the coating. Hardness differences between mating surfaces were also important factors in determining the wear characteristics, so that it should be controlled below 300 in Vickers hardness under dry conditions. Adhesive wear accompanying with metal transfer was a dominant wear mechanism for dry conditions.  相似文献   
982.
STS310S and SC-STS310S (simultaneously co-deposited chromium and aluminum onto 310S austenitic stainless steel substrate by pack-cementation process) were used as separator materials on the cathode side of a molten carbonate fuel cell. With the STS310S, corrosion proceeded via three steps; a formation step of unstable corrosion product, a protection step against corrosion until breakaway, and an advance step of corrosion after breakaway. The final corrosion product was LiFeO2 and the loss of mass was 6.5 mg/cm2 after a corrosion test of 480 hr at 650°C. The SC-STS310S showed more effective corrosion resistance, however, than did common STS310S. There was especially no corrosion loss on the SC-STS310S after the 480 hr corrosion test. It is anticipated that it will be very useful as an alternative separator on the cathode side off the MCFC in the future.  相似文献   
983.
Research was conducted on tailored blank welding between mild steel sheet and Zn-coated steel sheet using CO2 laser beam. The materials used in this study were low carbon steel sheets with a thickness of 1.2 mm and Zn-coated steel sheet with the same thickness and 6.3 μm Zn coating. Experiments were conducted by applying the Taguchi method to obtain optimum conditions for the application of this tailored blank laser welding method in practical manufacturing processes. Optical microscopy, XRD, SEM and TEM analysis were performed to observe the microstructures and to determine the structures of welded zone. In addition, mechanical properties were measured by the microhardness test, tensile test and Erichsen test to evaluate the formability of the welded specimen. There was no trapped Zn in the fusion zone, and the phases of this region consisted of polygonal ferrite, quasi-polygonal ferrite, banitic ferrite and martensite. The elongation value of welded specimen was more than 80% of the value in substrate metal, and the LDH value was more than 90% of the value in substrate metal.  相似文献   
984.
Lead acid batteries have had restricted applications because of relatively low energy density below 50Wh/kg. Many efforts have achieved lighter battery components such as separators, connections and containers etc. Thus, the most important problem of the lead acid battery is to improve the low capacity of the active material in the positive electrode. The purpose of this study is to improve the utilization of the active material in the lead dioxide electrode for the lead acid battery through the production of lead oxide with better physicochemical characteristics through cementation. A cementation reaction was performed in 1.0wt.%HCl solution using pure magnesium plate as the reductant. We investigated the utilization of the active material and discharge characteristics of the positive electrode with a current density ranging from 3.4 to 108.8mAcm−2. As a result, the active material utilization was about 72% at 3.48 mAcm−2 and increased with decreasing current density. The discharge characteristics according to current density are especially very good at high current density  相似文献   
985.
Cold-rolled and annealed ultra-high strength sheet steels with good ductility accompanied by TRIP of retained austenite have received considerable attention in recent years. This paper discusses the effect of silicon content and annealing temperature on the formation of retained austenite and the mechanical properties in Fe-0.34%C-1.7% Mn steels whose structure consists of ferrite, bainite and retained austenite. Silicon inhibited the cementite formation in bainite during isothermal holding and partitioned carbon from bainite to austenite, resulting in an increase in retained austenite content. When the silicon content was increased to 1.0 wt.% or higher, the amount of retained austenite markedly increased leading to good mechanical properties. 0.34%C-1.03%Si-1.7%Mn steel showed a high tensile strength of 1,030 MPa and a total elongation of 34.5% when annealed at 780°C for 5 min followed by isothermal holding at 400°C for 5 min. In this case, the amount of retained austenite was about 25%. The variation in tensile strength-elongation combination had good correlation with that in the amount of retained austenite with both annealing temperature and silicon content. The most retained austenite was obtained in the steel annealed at just above AC1 temperature. The annealing temperature which gives the most retained austenite was decreased with decreasing the silicon content.  相似文献   
986.
In this study, a large ceramic part was successfully compacted and sintered using uniaxial die compaction technique. The effects of die design, compaction pressure, lubrication, sintering procedure and part orientation in the oven on the P/M part quality were investigated and the preferred process conditions were discussed and concluded. The main quality issues encountered were cracking and distortion. A finite element model for the powder compaction process was also developed and validated. Based on the model, the relationship between the cracking location and the density distribution predicted from finite element analysis (FEA) was discussed.  相似文献   
987.
The availability of a smelter’s gas handling systems is crucial to the profitability of the plant. In new projects, the best technical and economic result is achieved if the gas handling systems are integrated into the process. This integration requires close cooperation between the smelter process designer and the gas handling designer. In modernization projects, environmentally, economically, and technically feasible solutions can be found, and smelter productivity can be increased when imagination and new technology are applied.  相似文献   
988.
Micro-end-milling of single-crystal silicon   总被引:1,自引:0,他引:1  
Ductile-regime machining of silicon using micro-end-mill is almost impossible because of the brittle properties of silicon, crystal orientation effects, edge radius of the cutter and the hardness of tool materials. Micro-end-milling can potentially be used to create desired three dimensional (3D) free form surface features using the ductile machining technology for single-crystal silicon. There is still a lack of fundamental understanding of micro-end-milling of single-crystal silicon using diamond-coated tool, specifically basic understanding of material removal mechanism, cutting forces and machined surface integrity in micro-scale machining of silicon. In this paper, further research to understand the chip formation mechanism was conducted. An analysis was performed to discover how the chips are removed during the milling process. Brittle and ductile cutting regimes corresponding to machined surfaces and chips are discussed. Experiments have shown that single-crystal silicon can be ductile machined using micro-end-milling process. Forces generated when micro-end-milling single-crystal silicon are used to determine the performance of the milling process. Experimental results show that the dependence of the cutting force on the uncut chip thickness can be well described by a polynomial function order n. As cutting regime becomes more brittle, the cutting force has more complex function.  相似文献   
989.
In the conventional metallothermic reduction (MR) process used to obtain tantalum powder in batch-type operation, it is difficult to control the morphology and location of the tantalum deposits. In contrast, an electronically mediated reaction (EMR) process is capable of overcoming this difficulty. It has the advantage of being a continuous process, but has the disadvantage of a poor reduction yield. A process known as the MR-EMR combination process is able to overcome the shortcomings of the MR and EMR processes. In this study, an MR-EMR combination process is applied to the production of tantalum powder via sodium reduction of K2TaF7. In the MR-EMR combination process, the total charge passed through an external circuit and the average particle size (FSSS) increase as the reduction temperature increases. In addition, the proportion of fine particles (−325 mesh) decreases as the reduction temperature increasess. The tantalum yield improved from 65 to 74% as the reduction temperature increased. Taking into account the charge, impurities, morphology, particle size and yield, a reduction temperature of 1123 K was found to be optimum for the MR-EMR combination process.  相似文献   
990.
With the aim of assessing the degradation of Zr−2.5Nb pressure tubes operating in the Wolsong unit-1 nuclear power plant, characterization tests are being conducted on irradiated Zr−2.5Nb tubes removed after 10-year operation. The examined tube had been exposed to temperatures ranging from 264 to 306°C and a neutron fluence of 8.9×1021 n/cm2 (E>1 MeV) at the maximum. Tensile tests were carried out at temperatures ranging from RT to 300°C. The density of a-type and c-type dislocations was examined on the irradiated Zr-2.5Nb tube using a transmission electron microscope. Neutron irradiation up to 8.9×1021 n/cm2 (E>1 MeV) yielded an increase in a-type dislocation density of the Zr−2.5Nb pressure tube to 7.5×1014 m−2, which was highest at the inlet of the tube exposed to the low temperature of 275°C. In contranst, the c-component dislocation density did not change with irradiation, keeping an initial dislocation density of 0.8×1014 m−2 over the whole length of the tube. As expected, the neutron irradiation increased mechanical strength by about 17–26% in the transverse direction and by 34–39% in the longitudinal direction compared to that of the unirradiated tube at 300°C. The change in the mechanical properties with irradiation is discussed in association with the microstructural change as a function of temperature and neutron fluence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号