首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   904篇
  免费   52篇
电工技术   10篇
化学工业   211篇
金属工艺   8篇
机械仪表   11篇
建筑科学   43篇
矿业工程   2篇
能源动力   39篇
轻工业   166篇
水利工程   10篇
石油天然气   5篇
无线电   96篇
一般工业技术   129篇
冶金工业   28篇
原子能技术   6篇
自动化技术   192篇
  2024年   4篇
  2023年   16篇
  2022年   37篇
  2021年   40篇
  2020年   29篇
  2019年   28篇
  2018年   28篇
  2017年   35篇
  2016年   28篇
  2015年   28篇
  2014年   54篇
  2013年   80篇
  2012年   77篇
  2011年   93篇
  2010年   70篇
  2009年   58篇
  2008年   52篇
  2007年   32篇
  2006年   31篇
  2005年   21篇
  2004年   17篇
  2003年   15篇
  2002年   21篇
  2001年   8篇
  2000年   3篇
  1999年   12篇
  1998年   5篇
  1997年   10篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1976年   1篇
排序方式: 共有956条查询结果,搜索用时 15 毫秒
51.
52.
Pro-inflammatory cytokines like interleukin-1β (IL-1β) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1β on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1β and used Atomic Force Microscopy to unveil that IL-1β significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1β stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1β may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1β-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1β provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.  相似文献   
53.
Graphene-supported monometallic (Pt) and bimetallic (CuPt3) cubic nanocatalysts have been investigated as new positive electrode materials for improving the VO2+/VO2+ redox process occurring in the vanadium redox flow batteries (VRB). High-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) have been employed to characterize the electrodes. The presence of the CuPt3 nanocubes on graphene conferred higher electrocatalytic activity due to the much higher electroactive area compared to that obtained with the Pt nanoparticles. The electrochemical surface area of the nano-(CuPt3)-decorated graphene electrode was 105% higher compared to non-decorated graphene, being then a promising alternative for improving the VRB.  相似文献   
54.
BACKGROUND: The integration of UV photocatalysis and biofiltration seems to be a promising combination of technologies for the removal of hydrophobic and poorly biodegradable air pollutants. The influence of pre‐treatments based on UV254 nm photocatalysis and photo‐oxidation on the biofiltration of toluene as a target compound was evaluated in a controlled long‐term experimental study using different system configurations: a standalone biofilter, a combined UV photocatalytic reactor‐biofilter, and a combined UV photo‐oxidation reactor (without catalyst)‐biofilter. RESULTS: Under the operational conditions used (residence time of 2.7 s and toluene concentrations 600–1200 mg C m?3), relatively low removal efficiencies (6–3%) were reached in the photocatalytic reactor and no degradation of toluene was found when the photo‐oxidation reactor was operated without catalyst. A noticeable improvement in the performance of the biofilter combined with a photocatalytic reactor was observed, and the elimination capacity of the biological process increased by more than 12 g C h?1 m?3 at the inlet loads studied of 50–100 g C h?1 m?3. No positive effect on toluene removal was observed for the combination of UV photoreactor and biofilter. CONCLUSIONS: Biofilter pre‐treatment based on UV254 nm photocatalysis showed promising results for the removal of hydrophobic and recalcitrant air pollutants, providing synergistic improvement in the removal of toluene. Copyright © 2011 Society of Chemical Industry  相似文献   
55.
56.
Incorporation of chloramphenicol and captopril into coated and uncoated monofilament sutures was evaluated, as well as the derived bactericide and wound healing effects. To this end, a commercially available suture and an amorphous random copolymer constituted by trimethylene carbonate and lactide units were considered. The suture had a segmented architecture based on polyglycolide hard blocks and a soft block constituted by glycolide, trimethylene carbonate and ε‐caprolactone units. Chloramphenicol was better loaded when the coating copolymer was employed due to its protective effect whereas captopril showed an opposite behavior due to partial solubilization during immersion in the coating bath. Interestingly, the release behavior was very different for the two studied drugs since a significant retention of chloramphenicol was always detected, suggesting the establishment of interactions between drug and copolymers. On the other hand, delivery of captopril showed a typical dose dependent behavior. A low in vitro toxicity of the two drugs was determined considering both epithelial‐like and fibroblast‐like cells. Bactericide effect of chloramphenicol against Gram‐negative and Gram‐positive bacteria was demonstrated at a dose that was non‐toxic for all assayed cells. An accelerating wound healing effect of captopril was also demonstrated for early events. In this case, the use of a coating copolymer was fundamental to avoid cytotoxic effects on highly loaded sutures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44762.  相似文献   
57.
We report a method to improve the thermal stability, up to 900 °C, of bare-metal (naked) gold nanoparticles supported on top of SiO(2) and SrTiO(3) substrates via ligand-assisted pinning. This approach leads to monodisperse naked gold nanoparticles without significant sintering after thermal annealing in air at 900 °C. The ligand-assisted pinning mechanism is described.  相似文献   
58.
Well-defined multiarm star copolymer poly(glycidol)-b-poly(styrene) (PGOH-b-PS) with an average number of PS arms per molecule of 85 has been prepared. The core first approach has been selected as the methodology using atom transfer radical polymerization (ATRP) of styrene to grow the arms from an activated hyperbranched poly(glycidol) as core. This activated hyperbranched macroinitiator was prepared by esterification of hyperbranched poly(glycidol) (PGOH) with 2-bromoisobutyryl bromide.PGOH-b-PS was used to modify diglycidylether of bisphenol A coatings cured by anionic ring-opening mechanism using 1-methyl imidazole as the initiator. The kinetics of the curing process, studied by dynamic scanning calorimetry (DSC), was not much affected when PGOH-b-PS was added to the formulation. By rheometry the effect of this new polymer topology on the complex viscosity (η*) of the reactive mixture was analyzed. The phase-separation of the modified coatings was proved by dynamic thermomechanical analysis (DMTA) and electronic microscopy (SEM and TEM) showing nano- or microphase separation as a function of the modifier content. The addition of this star polymer led to increase in the rigidity in terms of Young's modulus and in the microhardness in comparison to neat DGEBA.  相似文献   
59.
Electrospinning conditions were evaluated to prepare micro/nanofibers of a biodegradable poly(ester amide) constituted by L-alanine, 1,12-dodecanediol and sebacic acid. 1,1,1,3,3,3-Hexafluroroisopropanol appeared as the most appropriate solvent to obtain fibers in a wide range of electrospinning conditions that allowed tuning the final diameter size. Fiber diameter increased with the flow, distance between the needle tip and the collector and decreasing voltage, which made it possible to obtain homogeneous fibers in the 1700–320 nm range. Fibers were loaded with antimicrobial agents like silver and chlorohexidine, and the influence of agent concentration in the electrospinning solutions on the fiber diameter size was determined. The polymer was able to crystallize during the electrospinning process, giving rise to a structure slightly different from that obtained by solution crystallization and related to that attained after crystallization from the melt state. Addition of antimicrobial agents had little effect on the degree of crystallinity, although it decreased slightly when chlorhexidine was employed. Scaffolds prepared from the silver and chlorhexidine loaded samples supported cell adhesion and proliferation. Furthermore, a clear and well differentiated antimicrobial effect against both Gram-positive (e.g. M. luteus) and Gram-negative (e.g. E. coli) bacteria was demonstrated.  相似文献   
60.
Random copolyesters having 1,4-butanediol units were synthesized from a transesterification process between homopolymers constituted by aliphatic dicarboxylates (i.e. succinate, adipate or sebacate) and the aromatic therephthalate derivative, as verified by NMR spectroscopy. Biodegradability of resulting copolyesters was studied via enzymatic hydrolysis using Pseudomonas cepacia lipase at pH = 7.2 and 37 °C. Kinetics of degradation showed that in all cases the degradation rate decreased after 19 days of exposure. The observed glass transition temperatures, T g, of the random copolyesters showed a non-linear dependence on composition, a feature that was explained in terms of the internal stiffening effect of butylene terephthalate units. Copolymers with higher aliphatic (i.e. 50 and 70 mol-%) and methylene (i.e. adipate and sebacate units) contents showed double melting peaks in DSC thermograms. These copolyesters resulted in two different crystalline rich phases after melt-crystallization and subsequent cooling. The ratio between these phases logically depended on the predominant aliphatic or aromatic dicarboxylate content. The copolymers initially crystallized via the aromatic units through a heterogeneous nucleation and a spherulitic growth. The presence of aliphatic dicarboxylate units hindered the beginning of the crystallization process, but the overall growth kinetic constant was similar for all samples. The secondary nucleation constants were determined and showed higher values for samples with higher adipate and sebacate contents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号