首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   9篇
  国内免费   1篇
化学工业   10篇
金属工艺   2篇
能源动力   1篇
无线电   20篇
一般工业技术   19篇
冶金工业   1篇
自动化技术   1篇
  2023年   1篇
  2021年   1篇
  2020年   7篇
  2019年   5篇
  2018年   5篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1993年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
41.
Textile‐based electronics enable the next generation of wearable devices, which have the potential to transform the architecture of consumer electronics. Highly conductive yarns that can be manufactured using industrial‐scale processing and be washed like everyday yarns are needed to fulfill the promise and rapid growth of the smart textile industry. By coating cellulose yarns with Ti3C2Tx MXene, highly conductive and electroactive yarns are produced, which can be knitted into textiles using an industrial knitting machine. It is shown that yarns with MXene loading of ≈77 wt% (≈2.2 mg cm?1) have conductivity of up to 440 S cm?1. After washing for 45 cycles at temperatures ranging from 30 to 80 °C, MXene‐coated cotton yarns exhibit a minimal increase in resistance while maintaining constant MXene loading. The MXene‐coated cotton yarn electrode offers a specific capacitance of 759.5 mF cm?1 at 2 mV s?1. A fully knitted textile‐based capacitive pressure sensor is also prepared, which offers high sensitivity (gauge factor of ≈6.02), wide sensing range of up to ≈20% compression, and excellent cycling stability (2000 cycles at ≈14% compression strain). This work provides new and practical insights toward the development of platform technology that can integrate MXene in cellulose‐based yarns for textile‐based devices.  相似文献   
42.
The composite alpaca/acrylic fibers were auspiciously produced through a wet spinning technique to reduce the consumption of petroleum-based polyacrylonitrile (PAN) and to enhance the thermal stability and moisture properties of the fibers. The waste alpaca fibers were converted into powder using a mechanical milling method without applying any chemicals. Alpaca powders were then blended with the PAN dope solution in different weight ratios of alpaca: PAN (10:90, 20:80, and 30:70) to wet spin the composite fibers. The Fourier transform infrared spectroscopy showed that all the composite fibers possess the functional groups of both alpaca and PAN. The nuclear magnetic resonance spectroscopy confirmed the presence of typical carbonyl carbon (CO) and nitrile carbon (C≡N) peaks of protein and PAN, respectively. The differential scanning calorimetry and thermogravimetric analysis revealed the enhanced thermal stability of alpaca/PAN composite fibers. The moisture properties of the composite fibers were subsequently found to increase with the incorporation of alpaca, more than three times that of pure PAN fibers. These results revealed a potential green pathway to producing composite acrylic fibers with improved thermal and moisture properties by applying textile waste materials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48370.  相似文献   
43.
A green, one-step approach for the preparation of graphene/Ag nanocomposites (PE-HRG-Ag) via simultaneous reduction of both graphene oxide (GRO) and silver ions using Pulicaria glutinosa plant extract (PE) as reducing agent is reported. The plant extract functionalizes the surfaces of highly reduced graphene oxide (HRG) which helps in conjugating the Ag NPs to HRG. Increasing amounts of Ag precursor enhanced the density of Ag nanoparticles (NPs) on HRG. The preparation of PE-HRG-Ag nanocomposite is monitored by using ultraviolet–visible (UV-Vis) spectroscopy, powder X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The as-prepared PE-HRG-Ag nanocomposities display excellent surface-enhanced Raman scattering (SERS) activity, and significantly increased the intensities of the Raman signal of graphene.  相似文献   
44.
Key points in the formation of liquid crystalline (LC) dispersions of graphene oxide (GO) and their processability via wet‐spinning to produce long lengths of micrometer‐dimensional fibers and yarns are addressed. Based on rheological and polarized optical microscopy investigations, a rational relation between GO sheet size and polydispersity, concentration, liquid crystallinity, and spinnability is proposed, leading to an understanding of lyotropic LC behavior and fiber spinnability. The knowledge gained from the straightforward formulation of LC GO “inks” in a range of processable concentrations enables the spinning of continuous conducting, strong, and robust fibers at concentrations as low as 0.075 wt%, eliminating the need for relatively concentrated spinning dope dispersions. The dilute LC GO dispersion is proven to be suitable for fiber spinning using a number of coagulation strategies, including non‐solvent precipitation, dispersion destabilization, ionic cross‐linking, and polyelectrolyte complexation. One‐step continuous spinning of graphene fibers and yarns is introduced for the first time by in situ spinning of LC GO in basic coagulation baths (i.e., NaOH or KOH), eliminating the need for post‐treatment processes. The thermal conductivity of these graphene fibers is found to be much higher than polycrystalline graphite and other types of 3D carbon based materials.  相似文献   
45.
This paper presents the characterization of Rule 110 as a block substitution system of three symbols. Firstly, it is proved that the dynamics of Rule 110 is equivalent to cover the evolution space with triangles formed by the cells of the automaton. It is hence demonstrated that every finite configuration can be partitioned in several blocks of symbols and, that the dynamics of Rule 110 can be reproduced by a set of production rules applied to them. The shape of the blocks in the current configuration can be used for knowing the number of them in the next one; with this, the evolution of random configurations, ether and gliders can be modeled.  相似文献   
46.
Multiferroic behavior of Bi4 − xNdxFeTi3O12 (0.0 ≤ × ≤ 0.25, × = 0.05) ceramic nanoparticles prepared through the egg-white method was investigated. The dielectric properties of the samples show normal behavior and are explained in the light of space charge polarization. Room temperature polarization-electric field (P-E) curves show that the samples are not saturated with maximum remanence polarization, Pr= 0.110 μC/cm2, and a relatively low coercive field, Ec = of 7.918 kV/cm, at an applied field of 1 kV/cm was observed for 5% Nd doping. The room temperature M-H hysteresis curve shows that the samples exhibit intrinsic antiferromagnetism with a weak ferromagnetism. These properties entitle the grown nanoparticles of BNFT as one of the few multiferroic materials that exhibit decent magnetization and electric polarization.  相似文献   
47.
High quality opal‐like photonic crystals containing graphene are fabricated using evaporation‐driven self‐assembly of soft polymer colloids. A miniscule amount of pristine graphene within a colloidal crystal lattice results in the formation of colloidal crystals with a strong angle‐dependent structural color and a stop band that can be reversibly shifted across the visible spectrum. The crystals can be mechanically deformed or can reversibly change color as a function of their temperature, hence their sensitive mechanochromic and thermochromic response make them attractive candidates for a wide range of visual sensing applications. In particular, it is shown that the crystals are excellent candidates for visual strain sensors or integrated time‐temperature indicators which act over large temperature windows. Given the versatility of these crystals, this method represents a simple, inexpensive, and scalable approach to produce multifunctional graphene infused synthetic opals and opens up exciting applications for novel solution‐processable nanomaterial based photonics.  相似文献   
48.
49.
The development of visible-light photocatalysts with desirable material characteristics and efficient performance is an existing challenge for photocatalysis community. Herein, we report on the synthesis of silver nanoparticles (AgNPs) modified porous silicon (PSi) nanopowder and its effective use in the photo-reduction of hexavalent chromium Cr(VI) to trivalent Cr(III) under direct visible light irradiation in the presence of citric acid. The PSi was prepared via simple stain etching of Si microparticles in HF/HNO3 aqueous solution, followed by the deposition of AgNPs onto PSi by the immersion plating technique. The developed photocatalyst composed of PSi with <20 nm mesoporous structure, decorated with crystalline 15-50 nm AgNPs. Photocatalytic experiments using unmodified Si microparticles, either PSi or sonicated one, indicated inactive catalytic behavior toward the photo-reduction of Cr(VI). Remarkable photo-reduction efficiency (97.4%) was achieved after 180 minutes irradiation using the AgNPs/PSi sample. The efficient photo-reduction capability of AgNPs/PSi photocatalyst is attributed to the enhanced separation between photo-generated electrons and holes (e-h+) enabling better utilization of light, as revealed from the photoluminescence measurement. Additionally, the presence of citric acid in solution promoted greatly the photo-reduction reaction as it acted as a hole scavenger, suppressing further the rate of e-h+ recombination through rapid consumption of photo-generated holes. Excellent reusability of the current photocatalyst was evidenced by performing cyclic five runs with minimal reactivity loss. Results of synthesis, characterization, photocatalytic activity and reaction mechanism are thoroughly addressed and discussed.  相似文献   
50.
In this study, a deuterium exchange procedure has been employed to evaluate the thermal stability of globular proteins under conditions that replicate their interactive behavior in reversed-phase high performance chromatographic (RP-HPLC) systems. In particular, this investigation has permitted the conformational stability of two proteins, hen egg white lysozyme (HEWL) and horse heart myoglobin (HMYO) to be examined under different temperature and low-pH solvent regimes. The results confirm that this experimental approach provides an efficient strategy to explore fundamental conformational features of polypeptides or proteins in their folded and partial unfolded states under these interactive conditions. In particular, this analytical procedure permits insight to be readily gained into the processes that occur when polypeptides and globular proteins interact with lipophilic liquid/ solid interfaces in the presence of water-organic solvent mixtures at different temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号