首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3174篇
  免费   144篇
  国内免费   4篇
电工技术   37篇
综合类   4篇
化学工业   859篇
金属工艺   74篇
机械仪表   71篇
建筑科学   101篇
矿业工程   4篇
能源动力   100篇
轻工业   192篇
水利工程   17篇
石油天然气   7篇
无线电   305篇
一般工业技术   657篇
冶金工业   404篇
原子能技术   18篇
自动化技术   472篇
  2023年   31篇
  2022年   56篇
  2021年   93篇
  2020年   68篇
  2019年   75篇
  2018年   84篇
  2017年   67篇
  2016年   99篇
  2015年   67篇
  2014年   86篇
  2013年   171篇
  2012年   169篇
  2011年   187篇
  2010年   146篇
  2009年   122篇
  2008年   167篇
  2007年   152篇
  2006年   120篇
  2005年   115篇
  2004年   109篇
  2003年   80篇
  2002年   81篇
  2001年   59篇
  2000年   63篇
  1999年   43篇
  1998年   80篇
  1997年   54篇
  1996年   52篇
  1995年   52篇
  1994年   41篇
  1993年   41篇
  1992年   32篇
  1991年   25篇
  1990年   28篇
  1989年   24篇
  1988年   23篇
  1987年   24篇
  1986年   21篇
  1985年   19篇
  1984年   24篇
  1983年   27篇
  1982年   17篇
  1981年   22篇
  1979年   14篇
  1978年   24篇
  1977年   22篇
  1976年   22篇
  1975年   17篇
  1974年   17篇
  1973年   15篇
排序方式: 共有3322条查询结果,搜索用时 15 毫秒
31.
Dynamic core–shell nanoparticles have received increasing attention in recent years. This paper presents a detailed study of Au–Hg nanoalloys, whose composing elements show a large difference in cohesive energy. A simple method to prepare Au@Hg particles with precise control over the composition up to 15 atom% mercury is introduced, based on reacting a citrate stabilized gold sol with elemental mercury. Transmission electron microscopy shows an increase of particle size with increasing mercury content and, together with X‐ray powder diffraction, points towards the presence of a core–shell structure with a gold core surrounded by an Au–Hg solid solution layer. The amalgamation process is described by pseudo‐zero‐order reaction kinetics, which indicates slow dissolution of mercury in water as the rate determining step, followed by fast scavenging by nanoparticles in solution. Once adsorbed at the surface, slow diffusion of Hg into the particle lattice occurs, to a depth of ca. 3 nm, independent of Hg concentration. Discrete dipole approximation calculations relate the UV–vis spectra to the microscopic details of the nanoalloy structure. Segregation energies and metal distribution in the nanoalloys were modeled by density functional theory calculations. The results indicate slow metal interdiffusion at the nanoscale, which has important implications for synthetic methods aimed at core–shell particles.  相似文献   
32.
Direct‐ink writing (DIW), a rapidly growing and advancing form of additive manufacturing, provides capacities for on‐demand tailoring of materials to meet specific requirements for final designs. The penultimate challenge faced with the increasing demand of customization is to extend beyond modification of shape to create 4D structures, dynamic 3D structures that can respond to stimuli in the local environment. Patterning material gradients is foundational for assembly of 4D structures, however, there remains a general need for useful materials chemistries to generate gray scale gradients via DIW. Here, presented is a simple materials assembly paradigm using DIW to pattern ionotropic gradients in hydrogels. Using structures that architecturally mimic sea‐jelly organisms, the capabilities of spatial patterning are highlighted as exemplified by selectively programming the valency of the ion‐binding agents. Spatial gradients, when combined with geometry, allow for programming the flexibility and movement of iron oxide nanoparticle–loaded ionotropic hydrogels to generate 4D‐printed structures that actuate in the presence of local magnetic fields. This work highlights approaches to 4D design complexity that exploits 3D‐printed gray‐scale/gradient mechanics.  相似文献   
33.
34.
Porous polymeric foams as dielectric layer for highly sensitive capacitive based pressure sensors have been extensively explored owing to their excellent flexibility and elasticity. Despite intensive efforts, most of previously reported porous polymer foams still suffer from difficulty in further lowering the attainable density limit of ≈0.1 g cm?3 while retaining high sensitivity and compressibility due to the limitations on existing fabrication techniques and materials. Herein, utilizing 3D interconnected networks of few‐layer hexagonal boron nitride foams (h‐BNFs) as supporting frameworks, lightweight and highly porous BN/polydimethylsiloxane composite foams (BNF@PDMS) with densities reaching as low as 15 mg cm?3 and permittivity close to that of air are fabricated. This is the lightest PDMS‐based foam reported to date. Owing to the synergistic effects between BN and PDMS, these lightweight composite foams possess excellent mechanical resilience, extremely high compressibility (up to 95% strain), good cyclic performance, and superelasticity. Being electrically nonconductive, the potential application of BNF@PDMS as a dielectric layer for capacitive sensors is further demonstrated. Remarkably, the as‐fabricated device can perform multiple sensing functions such as noncontact touch sensor, environmental monitoring sensor, and high sensitivity pressure sensor that can detect extremely low pressures of below 1 Pa.  相似文献   
35.
Unsupervised image-set clustering using an information theoretic framework.   总被引:3,自引:0,他引:3  
In this paper, we combine discrete and continuous image models with information-theoretic-based criteria for unsupervised hierarchical image-set clustering. The continuous image modeling is based on mixture of Gaussian densities. The unsupervised image-set clustering is based on a generalized version of a recently introduced information-theoretic principle, the information bottleneck principle. Images are clustered such that the mutual information between the clusters and the image content is maximally preserved. Experimental results demonstrate the performance of the proposed framework for image clustering on a large image set. Information theoretic tools are used to evaluate cluster quality. Particular emphasis is placed on the application of the clustering for efficient image search and retrieval.  相似文献   
36.
This article traces the ontogenesis of peripheral electromagnetic receptors (PER) in the cuticle of the Oriental hornet (Vespa orientalis). In the abdominal cuticle of adult hornets, the PERs are densely distributed throughout, but there are even more than 30 at the margins of the segments. These organelles develop as a network in the hornet cuticle immediately upon its completion. Briefly, from each basic cell of a PER grows a bulge towards the exterior, that is, towards the illuminated region of the cuticle. This bulge develops rapidly and as it grows it starts to push out and lift up the various layers of the cuticle, the while pressing them together. By a spiraling movement, the bulge insinuates itself between the layers, whereupon it dissolves and punctures its way through all the layers of the hypocuticle, via the endocuticle up to the exocuticle. The only cuticular layer that remains intact is the epicuticle, but even that undergoes change, assuming the shape of a smooth surface with a depression at its center. The indented part in the epicuticle is circular, approximately 2.5 microm in diameter and enables the entry of radiation (illumination) from the outside into the PER, which is located half-way down the cuticle, with the distance from the exterior to the base of the PER being approximately 25 microm. The numerous lamellae of the cuticle run parallel to one another, but in the region of the bulge they are either perpendicular or directed upwards. This ontogeny of the PERs lends the cuticle a sandwich-like shape, being radically perforated by the PERs bulges, yet covered at the top by the epicuticle and at the bottom by basal cells. The PERs also extend shoots into the cuticular layer and these further perforate the cuticle but also interlink the various PERs. From all the above, it is clear that the cuticle forms first and only subsequently does the network of PERs develop and interpenetrate its various layers.  相似文献   
37.
Bio/artificial hybrid nanosystems based on biological matter and synthetic nanoparticles (NPs) remain a holy grail of materials science. Herein, inspired by the well-defined metal–organic framework (MOF) with diverse chemical diversities, the concept of “armored red blood cells” (armored RBCs) is introduced, which are native RBCs assembled within and protected by a functional exoskeleton of interlinked MOF NPs. Exoskeletons are generated within seconds through MOF NP interlocking based on metal-phenolic coordination and RBC membrane/NP complexation via hydrogen-bonding interactions at the cellular interface. Armored RBC formation is shown to be generalizable to many classes of MOF NPs or any NPs that can be coated by MOF. Moreover, it is found that armored RBCs preserve the original properties of RBCs (such as oxygen carrier capability and good ex ovo/in vivo circulation property) and show enhanced resistance against external stressors (like osmotic pressure, detergent, toxic NPs, and freezing conditions). By modifying the physicochemical properties of MOF NPs, armored RBCs provide the capability for blood nitric oxide sensing or multimodal imaging. The synthesis of armored RBCs is straightforward, reliable, and reversible and hence, represent a new class of hybrid biomaterials with a broad range of functionalities.  相似文献   
38.
Wireless Networks - Device to device (D2D) communication that provides high data rate proximity based direct communication between users, along with simultaneous wireless information and power...  相似文献   
39.
40.
The gecko adhesive system has attracted significant attention since the discovery that van der Waals interactions, which are always present between surfaces, are predominantly responsible for their adhesion. The unique anisotropic frictional–adhesive capabilities of the gecko adhesive system originate from complex hierarchical structures and just as importantly, the anisotropic articulation of the structures. Here, by cleverly engineering asymmetric polymeric microstructures, a reusable switchable gecko‐like adhesive can be fabricated yielding steady high adhesion ( ≈ 1.25 N/cm2) and friction ( ≈ 2.8 N/cm2) forces when actuated for “gripping”, yet release easily with minimal adhesion ( ≈ 0.34 N/cm2) and friction (≈ 0.38 N/cm2) forces during detachment or “releasing”, over multiple attachment/detachment cycles, with a relatively small normal preload of 0.16 N/cm2 to initiate the adhesion. These adhesives can also be used to reversibly suspend weights from vertical (e.g., walls), and horizontal (e.g., ceilings) surfaces by simultaneously and judiciously activating anisotropic friction and adhesion forces. This design opens the way for new gecko‐like adhesive surfaces and articulation mechanisms that do not rely on intensive nanofabrication in order to recover the anisotropic tribological property of gecko adhesive pads, albeit with lower adhesive forces compared to geckos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号