首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2724篇
  免费   31篇
  国内免费   6篇
电工技术   23篇
综合类   4篇
化学工业   631篇
金属工艺   125篇
机械仪表   163篇
建筑科学   41篇
能源动力   139篇
轻工业   216篇
水利工程   21篇
石油天然气   5篇
武器工业   2篇
无线电   400篇
一般工业技术   545篇
冶金工业   112篇
原子能技术   55篇
自动化技术   279篇
  2024年   60篇
  2023年   44篇
  2022年   65篇
  2021年   107篇
  2020年   76篇
  2019年   71篇
  2018年   85篇
  2017年   80篇
  2016年   98篇
  2015年   81篇
  2014年   116篇
  2013年   163篇
  2012年   218篇
  2011年   253篇
  2010年   162篇
  2009年   182篇
  2008年   129篇
  2007年   88篇
  2006年   96篇
  2005年   87篇
  2004年   69篇
  2003年   59篇
  2002年   53篇
  2001年   53篇
  2000年   54篇
  1999年   41篇
  1998年   65篇
  1997年   25篇
  1996年   14篇
  1995年   13篇
  1994年   15篇
  1993年   11篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有2761条查询结果,搜索用时 15 毫秒
51.
52.
53.
    
The radial mechanical properties of single-walled boron nitride nanotubes (SW-BNNTs) are investigated by atomic force microscopy. Nanomechanical measurements reveal the radial deformation of individual SW-BNNTs in both elastic and plastic regimes. The measured effective radial elastic moduli of SW-BNNTs are found to follow a decreasing trend with an increase in tube diameter, ranging from 40.78 to 1.85 GPa for tube diameters of 0.58 to 2.38 nm. The results show that SW-BNNTs have relatively lower effective radial elastic moduli than single-walled carbon nanotubes (SWCNTs). The axially strong, but radially supple characteristics suggest that SW-BNNTs may be superior to SWCNTs as reinforcing additives for nanocomposite applications.  相似文献   
54.
55.
56.
57.
    
A highly flexible and transparent transistor is developed based on an exfoliated MoS2 channel and CVD‐grown graphene source/drain electrodes. Introducing the 2D nanomaterials provides a high mechanical flexibility, optical transmittance (~74%), and current on/off ratio (>104) with an average field effect mobility of ~4.7 cm2 V?1 s?1, all of which cannot be achieved by other transistors consisting of a MoS2 active channel/metal electrodes or graphene channel/graphene electrodes. In particular, a low Schottky barrier (~22 meV) forms at the MoS2/graphene interface, which is comparable to the MoS2/metal interface. The high stability in electronic performance of the devices upon bending up to ±2.2 mm in compressive and tensile modes, and the ability to recover electrical properties after degradation upon annealing, reveal the efficacy of using 2D materials for creating highly flexible and transparent devices.  相似文献   
58.
59.
    
Accurate prediction of fatigue failure times of materials such as fracture and plastic deformation at various stress ranges has a strong bearing on practical fatigue design of materials. In this study, we propose a novel genetic‐based iterative quantile regression (GA‐IQR) algorithm for analyzing fatigue curves that represent a nonlinear relationship between a given stress amplitude and fatigue life. We reduce the problem to a linear framework and develop the iterative algorithm for determining the model coefficients including unknown fatigue limits. The procedure keeps updating the estimates in a direction to reduce its resulting error. Also, our approach benefits from the population‐based stochastic search of the genetic algorithms so that the algorithm becomes less sensitive to its initialization. Compared with conventional approaches, the proposed GA‐IQR requires fewer assumptions to develop fatigue model, capable of exploring the data structure in a relatively flexible manner. All procedures and calculations are quite straightforward, such that the proposed quantile regression model has a high potential value in a wide range of applications for exploring nonlinear relationships with lifetime data. Computational results for real data sets found in the literature present good evidences to support the argument. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号