Catalysis Letters - Hematite (α-Fe2O3) is a potential photoanode material for photoelectrochemical (PEC) water splitting, but its short hole diffusion length and low water oxidation kinetics... 相似文献
Comparative experiments are performed in friction stir welding (FSW) of dissimilar Al/Mg alloys with and without assistance of ultrasonic vibration. Metallographic characterization of the welds at transverse cross sections reveals that ultrasonic vibration induces differences in plastic material flow in two conditions. In FSW, the plastic material in the peripheral area of shoulder-affected zone (SAZ) tends to flow downward because of the weakening of the driving force of the shoulder, and a plastic material insulation layer is formed at the SAZ edge. When ultrasonic vibration is exerted, the stirred zone is divided into the inner and outer shear layers, the downward material flow trend of the inner shear layer disappears and tends to flow upward, and the onion-ring structure caused by the swirl motion is avoided in the pin-affected zone. By improving the flow behavior of plastic materials in the stirred zone, ultrasonic vibration reduces the heat generation, accelerates the heat dissipation in nugget zone and changes the thermal cycles, thus inhibiting the formation of intermetallic compound layers.
The synthesis and characterization of Ti–xMg (x=4, 9, 12, 15, 21, 24 at%) alloys using mechanical alloying was investigated. A nanometer-sized Ti–24Mg alloy was produced. During mechanical alloying, the height of the XRD peaks of the Mg in the Ti–9Mg alloy decreased, and then disappeared, whereas the Ti XRD peaks broadened, and the grain size decreased with increasing milling time. The Mg firstly dissolved in the grain boundaries of the Ti, and then diffused into the Ti grain interiors. The grain boundaries played an important role in enhancing the solid solubility of Mg in Ti. With increasing Mg content the volume fraction of grain boundaries increased, and a decrease in grain size occurred after mechanical alloying for 48 h. 相似文献
Molecular model approach has been used to predict the dispersion characteristics of flexible polymer chains in confined geometries.
The analysis ranges from the early stage dispersion to the steady Taylor dispersion of the simple linear dumbbell model polymer
chains. For the early stasje dispersion the ray method was applied; an Aris type moments rnothod was useful for the Taylor
dispersion. Two parallel plates were chosen as a confining geometry and the specific initial condition of a point source in
the midway of the gap was chosen for simplicity. It was found that the qualitative difference in dispersion properties of
deformable polymer chains starts from the early stage compared with those of single Brownian particles. And it turns out that
one parameter, which is similar to the relative spacing of the dumbbell to the gap of confining geometries, is useful to see
the dispersion characteristics of the dumbbells. 相似文献
Well-defined Ln2Sn2O7 powders (Ln = La, Sm and Gd) with a phase-pure pyrochlore structure were synthesized by hydrothermal reaction. The catalytic activities of Ln2Sn2O7 powders for methane combustion were measured. Methane oxidation started at 500 °C and increased with oxidation temperature. Catalytic methane combustion is strongly influenced by the presence of oxygen vacancies that form by breaking Sn–O lattice bonds as the temperature increases. Addition of manganese to the rare earth pyrochlores improved methane oxidation activity. Manganese-doped samarium stannate pyrochlore (Sm2Sn1.8Mn0.2O7) shows highest the catalytic activity. Light-off and complete oxidation temperatures were measured at about 400 and 650 °C, respectively. 相似文献