首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2192篇
  免费   37篇
  国内免费   9篇
电工技术   43篇
综合类   4篇
化学工业   508篇
金属工艺   72篇
机械仪表   105篇
建筑科学   29篇
能源动力   68篇
轻工业   213篇
水利工程   6篇
石油天然气   1篇
无线电   399篇
一般工业技术   437篇
冶金工业   131篇
原子能技术   25篇
自动化技术   197篇
  2024年   38篇
  2023年   39篇
  2022年   58篇
  2021年   83篇
  2020年   72篇
  2019年   83篇
  2018年   64篇
  2017年   69篇
  2016年   82篇
  2015年   60篇
  2014年   88篇
  2013年   134篇
  2012年   129篇
  2011年   152篇
  2010年   112篇
  2009年   107篇
  2008年   109篇
  2007年   79篇
  2006年   83篇
  2005年   73篇
  2004年   63篇
  2003年   50篇
  2002年   61篇
  2001年   51篇
  2000年   45篇
  1999年   42篇
  1998年   60篇
  1997年   40篇
  1996年   24篇
  1995年   11篇
  1994年   10篇
  1993年   12篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1976年   3篇
  1973年   1篇
排序方式: 共有2238条查询结果,搜索用时 15 毫秒
71.
    
Development of robust electrocatalysts for the oxygen evolution reaction (OER) underpins the efficient production of green hydrogen via anion exchange membrane water electrolysis (AEMWE). This study elucidates the factors contributing to the degradation of cobalt-based (Co-based) OER catalysts synthesized via electrodeposition, thus establishing strategic approaches to enhance their longevity. Systematic variations in the electroplating process and subsequent heat treatment reveal a delicate balance between catalytic activity and durability, substantiated by comprehensive electrochemical assessments and material analyses. Building upon these findings, the Co-based anode is successfully optimized in the AEMWE single-cell configuration, showcasing an average degradation rate of 0.07 mV h−1 over a continuous operation for 1500 h at a current density of 1 A cm−2.  相似文献   
72.
    
To develop strategies for efficient photo‐electrochemical water‐splitting, it is important to understand the fundamental properties of oxide photoelectrodes by synthesizing and investigating their single‐crystal thin films. However, it is challenging to synthesize high‐quality single‐crystal thin films from copper‐based oxide photoelectrodes due to the occurrence of significant defects such as copper or oxygen vacancies and grains. Here, the CuBi2O4 (CBO) single‐crystal thin film photocathode is achieved using a NiO template layer grown on single‐crystal SrTiO3 (STO) (001) substrate via pulsed laser deposition. The NiO template layer plays a role as a buffer layer of large lattice mismatch between CBO and STO (001) substrate through domain‐matching epitaxy, and forms a type‐II band alignment with CBO, which prohibits the transfer of photogenerated electrons toward bottom electrode. The photocurrent densities of the CBO single‐crystal thin film photocathode demonstrate ?0.4 and ?0.7 mA cm?2 at even 0 VRHE with no severe dark current under illumination in a 0.1 m potassium phosphate buffer solution without and with H2O2 as an electron scavenger, respectively. The successful synthesis of high‐quality CBO single‐crystal thin film would be a cornerstone for the in‐depth understanding of the fundamental properties of CBO toward efficient photo‐electrochemical water‐splitting.  相似文献   
73.
    
Compared with inorganic or perovskite solar cells, the relatively large non-radiative recombination voltage losses (ΔVnon-rad) in organic solar cells (OSCs) limit the improvement of the open-circuit voltage (Voc). Herein, OSCs are fabricated by adopting two pairs of D–π–A polymers (PBT1-C/PBT1-C-2Cl and PBDB-T/PBDB-T-2Cl) as electron donors and a wide-bandgap molecule BTA3 as the electron acceptor. In these blends, a charge-transfer state energy (ECT) as high as 1.70–1.76 eV is achieved, leading to small energetic differences between the singlet excited states and charge-transfer states (ΔECT ≈ 0.1 eV). In addition, after introducing chlorine atoms into the π-bridge or the side chain of benzodithiophene (BDT) unit, electroluminescence external quantum efficiencies as high as 1.9 × 10−3 and 1.0 × 10−3 are realized in OSCs based on PBTI-C-2Cl and PBDB-T-2Cl, respectively. Their corresponding ΔVnon-rad are 0.16 and 0.17 V, which are lower than those of OSCs based on the analog polymers without a chlorine atom (0.21 and 0.24 V for PBT1-C and PBDB-T, respectively), resulting in high Voc of 1.3 V. The ΔVnon-rad of 0.16 V and Voc of 1.3 V achieved in PBT1-C-2Cl:BTA3 OSCs are thought to represent the best values for solution-processed OSCs reported in the literature so far.  相似文献   
74.
    
Cancer immunotherapies, including adoptive T cell transfer and immune checkpoint blockades, have recently shown considerable success in cancer treatment. Nevertheless, transferred T cells often become exhausted because of the immunosuppressive tumor microenvironment. Immune checkpoint blockades, in contrast, can reinvigorate the exhausted T cells; however, the therapeutic efficacy is modest in 70–80% of patients. To address some of the challenges faced by the current cancer treatments, here T-cell-membrane-coated nanoparticles (TCMNPs) are developed for cancer immunotherapy. Similar to cytotoxic T cells, TCMNPs can be targeted at tumors via T-cell-membrane-originated proteins and kill cancer cells by releasing anticancer molecules and inducing Fas-ligand-mediated apoptosis. Unlike cytotoxic T cells, TCMNPs are resistant to immunosuppressive molecules (e.g., transforming growth factor-β1 (TGF-β1)) and programmed death-ligand 1 (PD-L1) of cancer cells by scavenging TGF-β1 and PD-L1. Indeed, TCMNPs exhibit higher therapeutic efficacy than an immune checkpoint blockade in melanoma treatment. Furthermore, the anti-tumoral actions of TCMNPs are also demonstrated in the treatment of lung cancer in an antigen-nonspecific manner. Taken together, TCMNPs have a potential to improve the current cancer immunotherapy.  相似文献   
75.
    
The imperative to electrify the transport sector in the past few decades has put millions of electric vehicles on the road worldwide with an extended mile range from critical technological breakthroughs in developing the rechargeable energy storage systems, which also covers electronic devices and smart grid applications. However, the available energy density of prevailing systems in the market (i.e., batteries) is reaching its boundaries due to the limited choice of electrochemical reactions that necessarily depend on the thermodynamics and kinetics of the components (e.g., cathode, anode, electrolyte, separator, and current collectors). Reaching the high energy density of batteries exploits new redox chemistry such as sensitive metal anodes, insulating and highly dissolving sulfur cathodes, etc., thus requiring novel designs of various multiscale functional materials to address the corresponding issues. Here, the recent achievements on the designs of smart functional materials for emerging problems in the whole range of systems are discussed: i) interfacial control/kinetic regulation of Li–S battery; ii) self‐healing‐driven structural stability in the electrode and electrolyte; iii) ion‐sieving functional membranes for selective scavenging capability; and iv) functional materials to ensure battery safety.  相似文献   
76.
    
Android supports seamless user experience by maintaining activities from different applications (apps) in the same activity stack. Although such close inter-app communication is essential in the Android framework, the powerful inter-app communication contains vulnerabilities that can inject malicious activities into a victim app's activity stack to hijack user interaction flows. In this article, we demonstrate activity injection attacks with a simple malware, and formally specify the activity activation mechanism using operational semantics. Based on the operational semantics, we develop a static analysis tool, which analyzes Android apps to detect activity injection attacks. Our tool is fast enough to analyze real-world Android apps in 6 seconds on average, and our experiments found that 1761 apps out of 129,756 real-world Android apps inject their activities into other apps' tasks. Moreover, we propose a defense mechanism, dubbed signature-based activity access control (SAAC), which completely prohibits activity injection attacks. The defense mechanism is general enough to keep the current Android multitasking features intact, and it is simple enough to be independent of the complex activity activation semantics, which does not increase activity activation time noticeably. With the extension of the formal semantics for SAAC, we prove that SAAC correctly mitigates activity injection attacks without any false alarms.  相似文献   
77.
    
Effective insertion of vertically aligned nanowires (NWs) into cells is critical for bioelectrical and biochemical devices, biological delivery systems, and photosynthetic bioenergy harvesting. However, accurate insertion of NWs into living cells using scalable processes has not yet been achieved. Here, NWs are inserted into living Chlamydomonas reinhardtii cells (Chlamy cells) via inkjet printing of the Chlamy cells, representing a low‐cost and large‐scale method for inserting NWs into living cells. Jetting conditions and printable bioink composed of living Chlamy cells are optimized to achieve stable jetting and precise ink deposition of bioink for indentation of NWs into Chlamy cells. Fluorescence confocal microscopy is used to verify the viability of Chlamy cells after inkjet printing. Simple mechanical considerations of the cell membrane and droplet kinetics are developed to control the jetting force to allow penetration of the NWs into cells. The results suggest that inkjet printing is an effective, controllable tool for stable insertion of NWs into cells with economic and scale‐related advantages.  相似文献   
78.
79.
    
This paper presents a timing controller embedded driver (TED) IC with 3.24‐Gbps embedded display port (eDP), which is implemented using a 45‐nm high‐voltage CMOS process for the chip‐on‐glass (COG) TFT‐LCD applications. The proposed TED‐IC employs the input offset calibration scheme, the zero‐adjustable equalizer, and the phase locked loop‐based bang‐bang clock and data recovery to enhance the maximum data rate. Also, the proposed TED‐IC provides efficient power management by supporting advanced link power management feature of eDP standard v1.4. Additionally, the smart charge sharing is proposed to reduce the dynamic power consumption of output buffers. Measured result demonstrates the maximum data rate of 3.24 Gbps from a 1.1 V supply voltage with a 7.9‐inch QXGA 60‐Hz COG‐LCD prototype panel and 44% power saving from the display system.  相似文献   
80.
    
The development and promotion of biofortified foods plants are a sustainable strategy for supplying essential micronutrients for human health and nutrition. We set out to identify quantitative trait loci (QTL) associated with carotenoid content in cowpea sprouts. The contents of carotenoids, including lutein, zeaxanthin, and β-carotene in sprouts of 125 accessions were quantified via high-performance liquid chromatography. Significant variation existed in the profiles of the different carotenoids. Lutein was the most abundant (58 ± 12.8 mg/100 g), followed by zeaxanthin (14.7 ± 3.1 mg/100 g) and β-carotene (13.2 ± 2.9 mg/100 g). A strong positive correlation was observed among the carotenoid compounds (r ≥ 0.87), indicating they can be improved concurrently. The accessions were distributed into three groups, following their carotenoid profiles, with accession C044 having the highest sprout carotenoid content in a single cluster. A total of 3120 genome-wide SNPs were tested for association analysis, which revealed that carotenoid biosynthesis in cowpea sprouts is a polygenic trait controlled by genes with additive and dominance effects. Seven loci were significantly associated with the variation in carotenoid content. The evidence of variation in carotenoid content and genomic regions controlling the trait creates an avenue for breeding cowpea varieties with enhanced sprouts carotenoid content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号