A criterion for determining the maximum spacing between magnetometers for measuring the magnetic field is derived. A two-dimensional (2-D) filter model is employed to determine the maximum spatial frequency component present in the magnetic field that is above the spectral noise level. This maximum frequency component is then sampled at a rate greater than twice per period as indicated by the Nyquist criterion, yielding the required magnetometer spacing. It is shown that the rule-of-thumb employed in current clinical biomagnetic array systems, that the spacing between the coils should be approximately equal to the depth of the source, is adequate when the signal-to-noise power ratio is less than 28.4 (14.5 dB). The analysis also quantitatively demonstrates that reducing the separation between the measurement and source planes has a greater effect on the resolution than decreasing the noise level by the same factor. This result is important for employing high Tc superconductor magnetometers that allow thinner thermal insulating layers at the cost of higher thermal noise 相似文献
This paper presents a model of heterogenous diffusion in capillary porous materials during the process of drying. The governing heat and mass transfer equations have been established using the liquid as well as vapor flow. Two models have been presented. Model 1 does not consider the heat conduction while the model 2 has been established by considering the conduction. The developed models and the numerical solutions of the resulting differential equations can take into account the moisture and temperature dependent thermophysical properties of the product. All equations have been established in spherical coordinates but the programme written for the purpose of calculations can be used for other geometries also. Numerical calculations have been performed for gas concrete and tiles using model 1, while model 2 has been used for gas concrete only because of the lack of data for thermophysical properties of the tile. For gas concrete it was seen that conduction has only marginal effect on the drying process and the numerical predictions of the drying process were reasonably accurate. 相似文献
α,ω-Methacrylate-terminated poly(1,3-dioxolane)s (polyDXL) were synthesized by cationic ring-opening polymerization of DXL in the presence of methylene-bis(oxyethylmethacrylate) as transfer agent. If the initiator concentration is small compared with the transfer agent concentration, the molecular weights of the polymers are governed by the ratio of the reacted monomer to the reacted transfer agent. The α,ω-methacrylate-terminated polyDXLs obtained undergo free radical polymerization with formation of polyacetal networks. The properties of the networks as function of the molecular weight of the corresponding prepolymers are reported. 相似文献
It is not known whether impaired hematopoiesis noted during human immunodeficiency virus (HIV) infection results from infection of stem/progenitor cells or of cells of the bone marrow microenvironment. Normal adherent primary stromal layers were exposed to HIV to determine which of this mixture of endothelial cells, fibroblasts, and macrophages are susceptible to the virus. Viral p24 in supernatants was noted with monocytotropic HIV-1Ada, HIV-1Ba-L, and HIV-1JR-FL but not with lymphotropic HIV-1LAI nor HIV-1MN strain, and only stromal macrophages expressed the viral antigens. Coculture of the layers with PHA-activated normal lymphocytes failed to rescue lymphotropic virus. No p24 was produced when macrophage-depleted stromal cells were exposed to either HIV-1Ba-L or HIV-1LAI; proviral DNA was then amplified by PCR in cells exposed to either virus, though coculture with lymphocytes rescued only HIV-1Ba-L. Altogether, these data indicate that macrophages are the major targets of HIV in cultured stromal layers. As virus replication in macrophages did not affect the profile of major cytokines involved in regulating hematopoiesis, HIV infection could alter hematopoiesis by other as yet unspecified mechanisms. 相似文献
A CEC-funded project has been performed to tackle the problem of producing an advanced Life Monitoring System (LMS) which would calculate the creep and fatigue damage experienced by high temperature pipework components. Four areas were identified where existing Life Monitoring System technology could be improved:
1. 1. the inclusion of creep relaxation
2. 2. the inclusion of external loads on components
3. 3. a more accurate method of calculating thermal stresses due to temperature transients
4. 4. the inclusion of high cycle fatigue terms.
The creep relaxation problem was solved using stress reduction factors in an analytical in-elastic stress calculation. The stress reduction factors were produced for a number of common geometries and materials by means of non-linear finite element analysis. External loads were catered for by producing influence coefficients from in-elastic analysis of the particular piping system and using them to calculate bending moments at critical positions on the pipework from load and displacement measurements made at the convenient points at the pipework. The thermal stress problem was solved by producing a completely new solution based on Green's Function and Fast Fourier transforms. This allowed the thermal stress in a complex component to be calculated from simple non-intrusive thermocouple measurements made on the outside of the component. The high-cycle fatigue problem was dealt with precalculating the fatigue damage associated with standard transients and adding this damage to cumulative total when a transient occurred.
The site testing provided good practical experience and showed up problems which would not otherwise have been detected. 相似文献
Given the enormous size of the genome and that there are potentially many other types of measurements we need to do to understand it, it has become necessary to pick and choose one's targets to measure because it is still impossible to evaluate the entire genome all at once. What has emerged is a need to have rapidly customizable microarrays. There are two dominant methods to accomplish custom microarray synthesis, Affymetrix-like microarrays manufactured using light projection rather than semiconductor-like masks used by Affymetrix to mass manufacture their GeneChip/sup TM/ arrays now, or the ink-jet printing method employed by Agilent. The manufacture of these custom Affymetrix-like microarrays can now be done on a digital optical chemistry (DOC) machine developed at the University of Texas Southwestern Medical Center, and this method offers much higher feature numbers and feature density than is possible with ink-jet printed arrays. On a microarray, each feature contains a single genetic measurement. The initial DOC prototype has been described in several publications, but that has now led to a second-generation machine. This machine reliably produces a number of arrays daily, has been deployed against a number of biomedical questions, is being used in new ways and has also led to a number of spin-off technologies. 相似文献
Rapeseed protein concentrate (RC), prepared with 2% hexameta-phosphate, was tested for its functionality and performance in some foods. The RC had good nitrogen solubility, fat absorption, emulsification, and whipping capacities but poor water absorption and gelling properties. It increased the emulsion stability, and protein but lowered the fat content of wieners. It also increased the cooking yield, reduced the shrinkage and tenderized meat patties. Results were similar to soybean isolate except for the poorer color and flavor. The cooking yield of RC supplemented wieners was less than the all-meat control and soybean-supplemented wieners. A 9% RC dispersion mixed with an equal volume of eggwhite produced a meringue of comparable stability and texture to that of eggwhite alone. 相似文献
No generally accepted principles and guidelines currently exist to help engineers design local interaction mechanisms that result in a desired global behavior. However, several communities have developed ways of approaching this problem in the context of niched application areas. Because the ideas underlying these approaches are often obscured or underemphasized in technical papers, the authors review the role of self-organization in their work. They provide a better picture of the status of the emerging field of self-organizing systems or autonomic computing. 相似文献
An all-optical multiplexing technique using wavelength division multiplexing (WDM)-time division multiplexing (TDM) conversion with an electroabsorption wavelength converter has been proposed and demonstrated. The effectiveness of this WDM-TDM conversion technique for various pulsewidth settings was experimentally investigated. The fluctuation of the signal performance, which was inevitably caused by the coherent crosstalk between adjacent pulses in the conventional optical time division multiplexing (OTDM) technique, were successfully suppressed, even in the case of wide pulse duration. High Q-factor performance has been maintained for a wide range of duty ration from 36% to 74%. By introducing this technique to the optical time division multiplexer, a highly stable and high-quality 40-Gb/s optical signal can be effectively produced without generating the short pulse or setting two tributaries at orthogonal polarization states, and without introducing high-speed electronics for signal multiplexing. The WDM-TDM conversion with an electroabsorption wavelength converter was extended to 60-Gb/s operation by using three 20-Gb/s tributaries. A clear eye opening was confirmed for a waveform after the WDM-TDM conversion of the 60-Gb/s signal 相似文献