首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   27篇
  国内免费   11篇
电工技术   7篇
综合类   7篇
化学工业   62篇
金属工艺   16篇
机械仪表   24篇
建筑科学   12篇
能源动力   26篇
轻工业   41篇
水利工程   7篇
石油天然气   4篇
无线电   30篇
一般工业技术   137篇
冶金工业   21篇
原子能技术   5篇
自动化技术   74篇
  2024年   1篇
  2023年   7篇
  2022年   18篇
  2021年   33篇
  2020年   22篇
  2019年   25篇
  2018年   31篇
  2017年   27篇
  2016年   22篇
  2015年   21篇
  2014年   24篇
  2013年   33篇
  2012年   30篇
  2011年   37篇
  2010年   38篇
  2009年   25篇
  2008年   15篇
  2007年   12篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有473条查询结果,搜索用时 0 毫秒
31.
32.
In this paper, three issues related to three‐dimensional multilink rigid body systems are considered: dynamics, actuation, and inversion. Based on the Newton‐Euler equations, a state space formulation of the dynamics is discussed that renders itself to inclusion of actuators, and allows systematic ways of stabilization and construction of inverse systems. The development here is relevant to robotic systems, biological modeling, humanoid studies, and collaborating man‐machine systems. The recursive dynamic formulation involves a method for sequential measurement and estimation of joint forces and couples for an open chain system. The sequence can start from top downwards or from the ground upwards. Three‐dimensional actuators that produce couples at the joints are included in the dynamics. Inverse methods that allow estimation of these couples from the kinematic trajectories and physical parameters of the system are developed. The formulation and derivations are carried out for a two‐link system. Digital computer simulations of a two‐rigid body system are presented to demonstrate the feasibility and effectiveness of the methods. © 2005 Wiley Periodicals, Inc.  相似文献   
33.
An approach for fabricating functionally graded specimens of supernickel alloy and ceramic compositions via Selective Laser Melting (SLM) is presented. The focus aimed at using the functionally graded material (FGM) concept to gradually grade powdered compositions of Zirconia within a base material of Waspaloy®. A high power Nd:YAG laser was used to process the material compositions to a high density with gradual but discrete changes between layered compositions. The graded specimens initially consisted of 100% Waspaloy® with subsequent layers containing increased volume compositions of Zirconia (0–10%). Specimens were examined for porosity and microstructure. It was found that specimens contained an average porosity of 0.34% with a gradual change between layers without any major interface defects.  相似文献   
34.
35.
In this article, an approximate solution using differential quadrature method is presented to investigate the effects of thermo-mechanical loads and stiffeners on the natural frequency and critical speed of stiffened rotating functionally graded cylindrical shells. Transverse shear deformation and rotary inertia, based on first-order shear deformation shell theory (FSDT), are taken into consideration. The equations of motion are derived by the Hamilton's principle while the stiffeners are treated as discrete elements. Material properties are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fraction of the constituents. The temperature field is assumed to be varied in the thickness direction. The equations of motion as well as the boundary condition equations are transformed into a set of algebraic equations applying the DQM. The results obtained include the relationship between frequency characteristics of different power-law index, rotating velocities, thermal loading and amplitude of axial load. To validate the present analysis, the comparison is made with a number of particular cases in literature. Excellent agreement is observed and a new range of results are presented for stiffened rotating FG cylindrical shell under thermo-mechanical loads which can be used as a benchmark to approximate solutions.  相似文献   
36.
Coronavirus disease (COVID-19) is a pandemic that has caused thousands of casualties and impacts all over the world. Most countries are facing a shortage of COVID-19 test kits in hospitals due to the daily increase in the number of cases. Early detection of COVID-19 can protect people from severe infection. Unfortunately, COVID-19 can be misdiagnosed as pneumonia or other illness and can lead to patient death. Therefore, in order to avoid the spread of COVID-19 among the population, it is necessary to implement an automated early diagnostic system as a rapid alternative diagnostic system. Several researchers have done very well in detecting COVID-19; however, most of them have lower accuracy and overfitting issues that make early screening of COVID-19 difficult. Transfer learning is the most successful technique to solve this problem with higher accuracy. In this paper, we studied the feasibility of applying transfer learning and added our own classifier to automatically classify COVID-19 because transfer learning is very suitable for medical imaging due to the limited availability of data. In this work, we proposed a CNN model based on deep transfer learning technique using six different pre-trained architectures, including VGG16, DenseNet201, MobileNetV2, ResNet50, Xception, and EfficientNetB0. A total of 3886 chest X-rays (1200 cases of COVID-19, 1341 healthy and 1345 cases of viral pneumonia) were used to study the effectiveness of the proposed CNN model. A comparative analysis of the proposed CNN models using three classes of chest X-ray datasets was carried out in order to find the most suitable model. Experimental results show that the proposed CNN model based on VGG16 was able to accurately diagnose COVID-19 patients with 97.84% accuracy, 97.90% precision, 97.89% sensitivity, and 97.89% of F1-score. Evaluation of the test data shows that the proposed model produces the highest accuracy among CNNs and seems to be the most suitable choice for COVID-19 classification. We believe that in this pandemic situation, this model will support healthcare professionals in improving patient screening.  相似文献   
37.
Surface chemistry is a pivotal prerequisite besides catalyst composition toward advanced water electrolysis. Here, an evident enhancement of the oxygen evolution reaction (OER) is demonstrated on a vanadate‐modified iron–nickel catalyst synthesized by a successive ionic layer adsorption and reaction method, which demonstrates ultralow overpotentials of 274 and 310 mV for delivering large current densities of 100 and 400 mA cm?2, respectively, in 1 m KOH, where vigorous gas bubble evolution occurs. Vanadate modification augments the OER activity by i) increasing the electrochemical surface area and intrinsic activity of the active sites, ii) having an electronic interplay with Fe and Ni catalytic centers, and iii) inducing a high surface wettability and a low‐gas bubble‐adhesion for accelerated mass transport and gas bubble dissipation at large current densities. Ex situ and operando Raman study reveals the structural evolution of β‐NiOOH and γ‐FeOOH phases during the OER through vanadate‐active site synergistic interactions. Operando dynamic specific resistance measurement evidences an accelerated gas bubble dissipation by a significant decrease in the variation of the interfacial resistance during the OER for the vanadate‐modified surface. Achievement of a high catalytic turnover of 0.12 s?1 suggests metallic oxo‐anion modification as a versatile catalyst design strategy for advanced water oxidation.  相似文献   
38.
Many students find it difficult to engage with mathematical concepts. As a relatively new class of learning tools, visualization tools may be able to promote higher levels of engagement with mathematical concepts. Often, development of new tools may outpace empirical evaluations of the effectiveness of these tools, especially in educational contexts. This seems to be the case with educational visualization tools. Much evidence about the effectiveness of these tools appears to be more suggestive than based on empirical evaluations. In this paper, we attempt to fill this gap and provide empirical evidence for the use of visualization tools in supporting exploratory and other learning-related activities. In particular, we aim to investigate whether visualization tools can be used to engage pre-university students in exploring non-trivial mathematical concepts. We focus particularly on this age group and content domain because of the difficulty these students may encounter when trying to investigate more challenging mathematical concepts. Also, it is during their formative years before university that students’ predisposition and likeness towards mathematical ideas are formed. We report in this paper a study assessing whether a visualization tool, whose design was informed explicitly by research from information visualization and human–computer interaction, could engage pre-university students in their exploration and learning of more advanced mathematical concepts. Students who participated in this study came from multiple grade levels and have diverse cognitive and language skills as well as preferences towards mathematics. The results of this study indicate that visualization tools can effectively engage these students and support their exploration of non-trivial mathematical concepts, only if the tool is designed such that it can cater the diverse needs of these students.  相似文献   
39.
In this paper, the robust bounded-input bounded-output stability of a large class of linear time invariant fractional order families of systems with real parametric uncertainties is analyzed. The transfer functions contain polynomials in fractional powers of the Laplace variable s, possibly in combination with exponentials of fractional powers of s. Using the concept of the value set and a generalization of the zero exclusion condition theorem, a theorem to check the robust bounded-input bounded-output stability of these families of systems is presented. An upper cutoff frequency for drawing the value sets is provided as well. Finally, two numerical examples are given to illustrate results obtained by the lemma and theorems presented in the paper.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号