首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   863篇
  免费   52篇
  国内免费   2篇
电工技术   9篇
综合类   2篇
化学工业   222篇
金属工艺   19篇
机械仪表   30篇
建筑科学   89篇
矿业工程   2篇
能源动力   32篇
轻工业   101篇
水利工程   9篇
无线电   54篇
一般工业技术   180篇
冶金工业   29篇
原子能技术   3篇
自动化技术   136篇
  2023年   9篇
  2022年   17篇
  2021年   24篇
  2020年   18篇
  2019年   24篇
  2018年   22篇
  2017年   26篇
  2016年   34篇
  2015年   32篇
  2014年   36篇
  2013年   60篇
  2012年   45篇
  2011年   46篇
  2010年   43篇
  2009年   40篇
  2008年   45篇
  2007年   45篇
  2006年   34篇
  2005年   36篇
  2004年   27篇
  2003年   23篇
  2002年   29篇
  2001年   11篇
  2000年   21篇
  1999年   19篇
  1998年   24篇
  1997年   17篇
  1996年   16篇
  1995年   9篇
  1994年   11篇
  1993年   8篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1978年   4篇
  1977年   3篇
  1976年   5篇
  1975年   2篇
  1971年   4篇
  1956年   1篇
  1935年   1篇
排序方式: 共有917条查询结果,搜索用时 15 毫秒
11.
Understanding crystallization processes and their pathways in metal‐halide perovskites is of crucial importance as this strongly affects the film microstructure, its stability, and device performance. While many approaches are developed to control perovskite formation, the mechanisms of film formation are still poorly known. Using time‐resolved in situ grazing incidence wide‐angle X‐ray scattering, the film formation of perovskites is investigated with average stoichiometry Cs0.15FA0.85PbI3, where FA is formamidinium, using the popular antisolvent dropping and gas jet treatments and this is contrasted with untreated films. i) The crystallization pathways during spin coating, ii) the subsequent postdeposition thermal annealing, and iii) crystallization during blade coating are studied. The findings reveal that the formation of a nonperovskite FAPbI3 phase during spin coating is initially dominant regardless of the processing and that the processing treatment (e.g., antisolvent dropping, gas jet) has a significant impact on the as‐cast film structure and affects the phase evolution during subsequent thermal treatment. It is shown that blade coating can be used to overcome the nonperovskite phase formation via solvothermal direct crystallization of perovskite phase. This work shows how real‐time investigation of perovskite formation can help to establish processing–microstructure–functionality relationships.  相似文献   
12.
Thin‐film silicon solar cells often rely on a metal back reflector separated from the silicon layers by a thin rear dielectric as a back reflector (BR) design. In this work, we aim to obtain a better insight into the influence of the rear‐dielectric/Ag BR design on the optical performance of hydrogenated microcrystalline silicon (µc‐Si:H) solar cells. To allow the application of a large variety of rear dielectrics combined with Ag BRs of diverse topographies, the solar cell is equipped with a local electrical contact scheme that enables the use of non‐conductive rear dielectrics such as air or transparent liquids of various refractive indices n. With this approach, detached Ag BRs having the desire surface texture can be placed behind the same solar cell, yielding a direct and precise evaluation of their impact on the optical cell performance. The experiments show that both the external quantum efficiency and the device absorptance are improved with decreasing n and increasing roughness of the BR. Calculations of the angular intensity distribution of the scattered light in the µc‐Si:H are presented. They allow for establishing a consistent picture of the light trapping in the solar cell. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
13.
State of the art of geothermal reservoir simulation   总被引:3,自引:0,他引:3  
Computer modeling of geothermal systems has become a mature technology with application to more than 100 fields world-wide. Large complex three-dimensional models having computational meshes with more than 4000 blocks are now used routinely. Researchers continue to carry out fundamental research on modeling techniques and physical processes in geothermal systems. The new advances are adopted quickly by the geothermal industry and have also found application in related areas such as nuclear waste storage, environmental remediation and studies of the vadose (unsaturated) zone. The current state-of-practice, recent advances and emerging trends in geothermal reservoir simulation are reviewed.  相似文献   
14.
Numerical simulation is used to evaluate the mass flow and heat extraction rates from enhanced geothermal injection–production systems that are operated using either CO2 or water as heat transmission fluid. For a model system patterned after the European hot dry rock experiment at Soultz, we find significantly greater heat extraction rates for CO2 as compared to water. The strong dependence of CO2 mobility (=density/viscosity) upon temperature and pressure may lead to unusual production behavior, where heat extraction rates can actually increase for a time, even as the reservoir is subject to thermal depletion. We present the first ever, three-dimensional simulations of CO2 injection–production systems. These show strong effects of gravity on the mass flow and heat extraction due to the large contrast of CO2 density between cold injection and hot production conditions. The tendency for preferential flow of cold, dense CO2 along the reservoir bottom can lead to premature thermal breakthrough. The problem can be avoided by producing from only a limited depth interval at the top of the reservoir.  相似文献   
15.
Electrical transport properties of molecular junctions are fundamentally affected by the energy alignment between molecular frontier orbitals (highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO)) and Fermi level (or work function) of electrode metals. Dithiafulvene (DTF) is used as substituent group to the oligo(phenylene ethynylene) (OPE) molecular wires and different molecular structures based on OPE3 backbone (with linear to cruciform framework) are achieved, with viable molecular orbitals and HOMO–LUMO energy gaps. OPE3, OPE3–DTF, and OPE3–tetrathiafulvalene (TTF) can form good self‐assembled monolayers (SAMs) on Au substrates. Molecular heterojunctions based on these SAMs are investigated using conducting probe–atomic force microscopy with different tips (Ag, Au, and Pt) and Fermi levels. The calibrated conductance values follow the sequence OPE3–TTF > OPE3–DTF > OPE3 irrespective of the tip metal. Rectification properties (or diode behavior) are observed in case of the Ag tip for which the work function is furthest from the HOMO levels of the OPE3s. Quantum chemical calculations of the transmission qualitatively agree with the experimental data and reproduce the substituent effect of DTF. Zero‐bias conductance, and symmetric or asymmetric couplings to the electrodes are investigated. The results indicate that improved fidelity of molecular transport measurements may be achieved by systematic studies of homologues series of molecular wires applying several different metal electrodes.  相似文献   
16.
The gallium gradient in Cu(In,Ga)Se2 (CIGS) layers, which forms during the two industrially relevant deposition routes, the sequential and co‐evaporation processes, plays a key role in the device performance of CIGS thin‐film modules. In this contribution, we present a comprehensive study on the formation, nature, and consequences of gallium gradients in CIGS solar cells. The formation of gallium gradients is analyzed in real time during a rapid selenization process by in situ X‐ray measurements. In addition, the gallium grading of a CIGS layer grown with an in‐line co‐evaporation process is analyzed by means of depth profiling with mass spectrometry. This gallium gradient of a real solar cell served as input data for device simulations. Depth‐dependent occurrence of lateral inhomogeneities on the µm scale in CIGS deposited by the co‐evaporation process was investigated by highly spatially resolved luminescence measurements on etched CIGS samples, which revealed a dependence of the optical bandgap, the quasi‐Fermi level splitting, transition levels, and the vertical gallium gradient. Transmission electron microscopy analyses of CIGS cross‐sections point to a difference in gallium content in the near surface region of neighboring grains. Migration barriers for a copper‐vacancy‐mediated indium and gallium diffusion in CuInSe2 and CuGaSe2 were calculated using density functional theory. The migration barrier for the InCu antisite in CuGaSe2 is significantly lower compared with the GaCu antisite in CuInSe2, which is in accordance with the experimentally observed Ga gradients in CIGS layers grown by co‐evaporation and selenization processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
17.
Lipoxins (LXs) are autacoids, specialized proresolving lipid mediators (SPMs) acting locally in a paracrine or autocrine fashion. They belong to a complex superfamily of dietary small polyunsaturated fatty acid (PUFA)–metabolites, which direct potent cellular responses to resolve inflammation and restore tissue homeostasis. Together, these SPM activities have been intensely studied in systemic inflammation and acute injury or infection, but less is known about LX signaling and activities in the central nervous system. LXs are derived from arachidonic acid, an omega‐6 PUFA. In addition to well‐established roles in systemic inflammation resolution, they have increasingly become implicated in regulating neuroinflammatory and neurodegenerative processes. In particular, chronic inflammation plays a central role in Alzheimer's disease (AD) etiology, and dysregulated LX production and activities have been reported in a variety of AD rodent models and clinical tissue samples, yet with complex and sometimes conflicting results. In addition, reduced LX production following retinal injury has been reported recently by the authors, and an intriguing direct neuronal activity promoting survival and homeostasis in retinal and cortical neurons is demonstrated. Here, the authors review and clarify this growing literature and suggest new research directions to further elaborate the role of lipoxins in neurodegeneration.  相似文献   
18.
A sensitive LC–MS/MS method for the simultaneous determination of type A, B and D trichothecenes in cereals is presented. The limits of detection ranged between 0.1 and 0.7 µg kg?1 for all analytes. The method was applied to 289 representatively drawn samples of wheat, rye and oat products. Ninety-four percent of the wheat samples (n = 130), 95% of the rye samples (n = 61) and 100% of the oat samples (n = 98) were contaminated with the type A trichothecenes T-2 and HT-2 toxin. Median levels of T-2/HT-2 (sum of the toxins) were 0.91, 0.53 and 8.2 µg kg?1, respectively. Highest levels were found in wheat bran (24 µg kg?1), rye kernels (3.1 µg kg?1) and oat flakes (85 µg kg?1). All wheat and rye samples and 75% of the oat samples were contaminated with the type B trichothecene deoxynivalenol. Median levels of this toxin were 23, 15 and 0.53 µg kg?1, respectively. Highest levels were found in wheat bran (1160 µg kg?1), rye kernels (288 µg kg?1) and oat flakes (55 µg kg?1). The type B trichothecene nivalenol was detected in 67% of the wheat samples, in 3% of the rye samples and in 24% of the oat samples with highest levels in wheat bran (96 µg kg?1), rye kernels (1.8 µg kg?1) and in oat flakes (17 µg kg?1), respectively. Levels of other type A and B trichothecenes played a minor role, although the rates of contamination were often high. Neither macrocyclic type D trichothecenes (satratoxin G and H, verrucarin A, roridin A) nor diacetylverrucarol and verrucarol (type A trichothecenes), were detected in any of the samples.  相似文献   
19.
In the transition period from late gestation to early lactation, dairy cows undergo tremendous metabolic changes. Insulin is a relevant antilipolytic factor. Decreasing serum concentrations of insulin and glucose, increasing serum concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB), and changes in body condition score (BCS) reflect the negative energy balance around calving. This study investigated peripartum metabolic adaptation in 359 primiparous and 235 multiparous German Holstein cows from a commercial dairy herd under field conditions. Body condition score was recorded and blood samples were taken 10 to 1 d prepartum, 2 to 4 d postpartum, and 12 to 20 d postpartum. Generalized mixed models and generalized estimation equations were applied to assess associations between prepartum BCS; BCS changes during the transition period; insulin, glucose, NEFA, and BHB serum concentrations; and milk yield, which was taken from an electronic milk meter from d 6 of lactation. Serum insulin concentrations of multiparous postpartum cows were lower compared with prepartum, and compared with primiparous cows. In general, primiparous cows had lower postpartum NEFA and BHB concentrations than multiparous cows. In primiparous cows, we identified a positive association between prepartum BCS and prepartum serum insulin concentration. Prepartum obese multiparous cows, but not primiparous cows, were characterized by higher postpartum serum NEFA and BHB concentrations and lower milk yield than other cows in the same parity class. Primiparous cows with a smaller degree of BCS loss during the transition period had higher postpartum insulin and lower NEFA concentrations and lower milk yield than other primiparous cows. In conclusion, primiparous cows had less lipolysis and lower milk yield than multiparous cows, associated with higher insulin concentrations. Avoiding high body condition loss during the transition period is a main factor in preventing peripartal metabolic imbalances of glucose and fat metabolism.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号