首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   18篇
化学工业   68篇
机械仪表   4篇
建筑科学   16篇
能源动力   7篇
轻工业   38篇
水利工程   6篇
无线电   8篇
一般工业技术   68篇
冶金工业   72篇
自动化技术   46篇
  2023年   1篇
  2022年   11篇
  2021年   16篇
  2020年   6篇
  2019年   6篇
  2018年   13篇
  2017年   9篇
  2016年   7篇
  2015年   7篇
  2014年   11篇
  2013年   19篇
  2012年   16篇
  2011年   34篇
  2010年   14篇
  2009年   18篇
  2008年   15篇
  2007年   19篇
  2006年   25篇
  2005年   16篇
  2004年   16篇
  2003年   12篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   10篇
  1997年   4篇
  1996年   2篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
  1976年   1篇
排序方式: 共有333条查询结果,搜索用时 15 毫秒
11.
Many fungi have evolved mechanisms to assess environmental nutrient availability prior to the energy‐intensive process of mating. In this study, we examined one such system in Saccharomyces cerevisiae, involving a glucose‐sensing pathway mediated by Gpr1p and the pheromone‐induced mating pathway. Initially we observed that the mating pathway in MATa cells is sensitive to environmental glucose depletion. This phenomenon can be partially reversed with a high glucose spike, but not with the addition of low levels of glucose. Deletion of the low‐affinity glucose receptor, Gpr1p, eliminated this glucose‐induced recovery of pheromone responsiveness. We then determined the impact of GPR1 deletion on the mating pathway and observed that, in all end points studied, the mating pathway response to pheromone is reduced in the absence of Gpr1p. Similarly, elimination of the Gα for Gpr1p, Gpa2p, resulted in reduction in pheromone sensitivity in all assays studied. The negative effect of removing Gpr1p on mating pathway activation could be recovered by overexpressing the mating receptor, Ste2p. Furthermore, Ste2p levels are reduced in the absence of glucose and GPR1. These data suggest that activity of the GPCR‐mediated mating pathway in S. cerevisiae is modulated by extracellular glucose concentrations through the only other GPCR in MATa cells, Gpr1p. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
12.
13.
14.
Glutamate racemases (GR) are members of the family of bacterial enzymes known as cofactor-independent racemases and epimerases and catalyze the stereoinversion of glutamate. D-amino acids are universally important for the proper construction of viable bacterial cell walls, and thus have been repeatedly validated as attractive targets for novel antimicrobial drug design. Significant aspects of the mechanism of this challenging stereoinversion remain unknown. The current study employs a combination of MD and QM/MM computational approaches to show that the GR from H. pylori must proceed via a pre-activation step, which is dependent on the enzyme's flexibility. This mechanism is starkly different from previously proposed mechanisms. These findings have immediate pharmaceutical relevance, as the H. pylori GR enzyme is a very attractive allosteric drug target. The results presented in this study offer a distinctly novel understanding of how AstraZeneca's lead series of inhibitors cripple the H. pylori GR's native motions, via prevention of this critical chemical pre-activation step. Our experimental studies, using SPR, fluorescence and NMR WaterLOGSY, show that H. pylori GR is not inhibited by the uncompetitive mechanism originally put forward by Lundqvist et al.. The current study supports a deep connection between native enzyme motions and chemical reactivity, which has strong relevance to the field of allosteric drug discovery.  相似文献   
15.
A series of 26 different antioxidants and commercial antioxidant packages designed for petroleum‐based materials, containing both natural and synthetic‐based materials, were evaluated with dimeric coconut‐oleic estolide 2‐ethylhexyl ester (2‐EH), a bio‐based material. The different antioxidants were categorized into different classes of phenolic, aminic, and blended/others materials. The oxidation onset temperatures (OT) using non‐isothermal pressurized differential scanning calorimetry (PDSC) were measured and recorded under previously reported standard conditions. The aminic series gave the best resistance to oxidation as defined by the PDSC method with OT of 246.6 and 244.7 °C for the best two performers, which was a 38 °C improvement over the uninhibited or unformulated dimer estolide material. The phenolic series, containing most of the naturally occurring antioxidants, was the least successful formulation package for the dimer estolide. The blended/other materials, which were specifically designed for petroleum‐based lubricants, did not have the best OT, since the estolides and other bio‐based materials interact differently than their petroleum counterparts. A number of potential antioxidants have been identified as useful additives for the estolides esters. The OT of the estolide and formulated materials correlated well with other bio‐based materials such as biodiesel.  相似文献   
16.
Exposure to sunlight is the major cause of skin cancer. Ultraviolet radiation (UV) from the sun causes damage to DNA by direct absorption and can cause skin cell death. UV also causes production of reactive oxygen species that may interact with DNA to indirectly cause oxidative DNA damage. UV increases accumulation of p53 in skin cells, which upregulates repair genes but promotes death of irreparably damaged cells. A benefit of sunlight is vitamin D, which is formed following exposure of 7-dehydrocholesterol in skin cells to UV. The relatively inert vitamin D is metabolized to various biologically active compounds, including 1,25-dihydroxyvitamin D3. Therapeutic use of vitamin D compounds has proven beneficial in several cancer types, but more recently these compounds have been shown to prevent UV-induced cell death and DNA damage in human skin cells. Here, we discuss the effects of vitamin D compounds in skin cells that have been exposed to UV. Specifically, we examine the various signaling pathways involved in the vitamin D-induced protection of skin cells from UV.  相似文献   
17.
Acute kidney injury (AKI) is a common complication of critical illness, and evidence is emerging that suggests AKI disrupts the function of other organs. It is a recognized phenomenon that patients with chronic kidney disease (CKD) have reduced hepatic metabolism of drugs, via the cytochrome P450 (CYP) enzyme group, and drug dosing guidelines in AKI are often extrapolated from data obtained from patients with CKD. This approach, however, is flawed because several confounding factors exist in AKI. The data from animal studies investigating the effects of AKI on CYP activity are conflicting, although the results of the majority do suggest that AKI impairs hepatic CYP activity. More recently, human study data have also demonstrated decreased CYP activity associated with AKI, in particular the CYP3A subtypes. Furthermore, preliminary data suggest that patients expressing the functional allele variant CYP3A5*1 may be protected from the deleterious effects of AKI when compared with patients homozygous for the variant CYP3A5*3, which codes for a non-functional protein. In conclusion, there is a need to individualize drug prescribing, particularly for the more sick and vulnerable patients, but this needs to be explored in greater depth.  相似文献   
18.
Methylene blue derivatives, synthesised as novel photosensitising agents are usually simple auxochromic variations on the lead compound. The current paper represents the initial report on the synthesis and biological testing of a new class of phenothiazinium derivatives, having either one or two tetrahydropyridine rings fused to the phenothiazinium chromophore. The derivatives exhibited extended absorption wavelengths, increased amphiphilic character and much greater photoantimicrobial efficacies compared to methylene blue, some examples being more effective even than dimethyl methylene blue. The high activities of this class of photosensitiser recommend its use in infection control, both locally and in blood product decontamination.  相似文献   
19.
Electrochemical waste water treatment: Electrooxidation of acetaminophen   总被引:2,自引:0,他引:2  
Oxidation of acetaminophen at boron-doped diamond (BDD) and at Ti/SnO2 anodes in a plug-flow divided electrochemical reactor led to electrochemical combustion, whereas at Ti/IrO2 benzoquinone was the exclusive product except at very long electrolysis times. The difference is explicable in terms of the different mechanisms of oxidation: direct oxidation at the anode for Ti/IrO2 vs. indirect oxidation involving electrogenerated hydroxyl radicals at BDD and Ti/SnO2. At BDD, at which the efficiency of degradation of acetaminophen was greatest, the rate of electrolysis at constant concentration was linearly dependent on the current, and at constant current linearly dependent on the concentration. Current efficiencies for mineralization up to 26% were achieved without optimization of the cell design.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号