首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   12篇
  国内免费   3篇
电工技术   23篇
综合类   1篇
化学工业   152篇
金属工艺   21篇
机械仪表   7篇
建筑科学   11篇
能源动力   22篇
轻工业   30篇
水利工程   1篇
无线电   20篇
一般工业技术   155篇
冶金工业   4篇
原子能技术   22篇
自动化技术   32篇
  2022年   15篇
  2021年   6篇
  2020年   7篇
  2019年   8篇
  2018年   6篇
  2017年   5篇
  2016年   9篇
  2015年   10篇
  2014年   15篇
  2013年   23篇
  2012年   22篇
  2011年   35篇
  2010年   15篇
  2009年   35篇
  2008年   22篇
  2007年   23篇
  2006年   25篇
  2005年   17篇
  2004年   12篇
  2003年   16篇
  2002年   18篇
  2001年   12篇
  2000年   13篇
  1999年   8篇
  1998年   15篇
  1997年   5篇
  1996年   11篇
  1995年   4篇
  1994年   9篇
  1993年   4篇
  1992年   6篇
  1991年   7篇
  1990年   1篇
  1989年   9篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   6篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   7篇
  1978年   4篇
  1977年   6篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1971年   2篇
  1970年   3篇
排序方式: 共有501条查询结果,搜索用时 15 毫秒
91.
In this study, multi-objective genetic algorithms (GAs) are introduced to partial least squares (PLS) model building. This method aims to improve the performance and robustness of the PLS model by removing samples with systematic errors, including outliers, from the original data. Multi-objective GA optimizes the combination of these samples to be removed. Training and validation sets were used to reduce the undesirable effects of over-fitting on the training set by multi-objective GA. The reduction of the over-fitting leads to accurate and robust PLS models. To clearly visualize the factors of the systematic errors, an index defined with the original PLS model and a specific Pareto-optimal solution is also introduced. This method is applied to three kinds of near-infrared (NIR) spectra to build PLS models. The results demonstrate that multi-objective GA significantly improves the performance of the PLS models. They also show that the sample selection by multi-objective GA enhances the ability of the PLS models to detect samples with systematic errors.  相似文献   
92.
This paper reports new methodology to obtain a calibration model for noninvasive blood glucose monitoring using diffuse reflectance near-infrared (NIR) spectroscopy. Conventional studies of noninvasive blood glucose monitoring with NIR spectroscopy use a calibration model developed by in vivo experimental data sets. In order to create a calibration model, we have used a numerical simulation of light propagation in skin tissue to obtain simulated NIR diffuse reflectance spectra. The numerical simulation method enables us to design parameters affecting the prediction of blood glucose levels and their variation ranges for a data set to create a calibration model using multivariate analysis without any in vivo experiments in advance. By designing the parameters and their variation ranges appropriately, we can prevent a calibration model from chance temporal correlations that are often observed in conventional studies using NIR spectroscopy. The calibration model (regression coefficient vector) obtained by the numerical simulation has a characteristic positive peak at the wavelength around 1600 nm. This characteristic feature of the regression coefficient vector is very similar to those obtained by our previous in vitro and in vivo experimental studies. This positive peak at around 1600 nm also corresponds to the characteristic absorption band of glucose. The present study has reinforced that the characteristic absorbance of glucose at around 1600 nm is useful to predict the blood glucose level by diffuse reflectance NIR spectroscopy. We have validated this new calibration methodology using in vivo experiments. As a result, we obtained a coefficient of determination, r2, of 0.87 and a standard error of prediction (SEP) of 12.3 mg/dL between the predicted blood glucose levels and the reference blood glucose levels for all the experiments we have conducted. These results of in vivo experiments indicate that if the parameters and their vibration ranges are appropriately taken into account in a numerical simulation, the new calibration methodology provides us with a very good calibration model that can predict blood glucose levels with small errors without conducting any experiments in advance to create a calibration model for each individual patient. This new calibration methodology using numerical simulation has promising potential for NIR spectroscopy, especially for noninvasive blood glucose monitoring.  相似文献   
93.
We have applied a new methodology for noninvasive continuous blood glucose monitoring, proposed in our previous paper, to patients in ICU (intensive care unit), where strict controls of blood glucose levels are required. The new methodology can build calibration models essentially from numerical simulation, while the conventional methodology requires pre-experiments such as sugar tolerance tests, which are impossible to perform on ICU patients in most cases. The in vivo experiments in this study consisted of two stages, the first stage conducted on healthy subjects as preliminary experiments, and the second stage on ICU patients. The prediction performance of the first stage was obtained as a correlation coefficient (r) of 0.71 and standard error of prediction (SEP) of 28.7 mg/dL. Of the 323 total data, 71.5% were in the A zone, 28.5% were in the B zone, and none were in the C, D, and E zones for the Clarke error-grid analysis. The prediction performance of the second stage was obtained as an r of 0.97 and SEP of 27.2 mg/dL. Of the 304 total data, 80.3% were in the A zone, 19.7% were in the B zone, and none were in the C, D, and E zones. These prediction results suggest that the new methodology has the potential to realize a noninvasive blood glucose monitoring system using near-infrared spectroscopy (NIRS) in ICUs. Although the total performance of the present monitoring system has not yet reached a satisfactory level as a stand-alone system, it can be developed as a complementary system to the conventional one used in ICUs for routine blood glucose management, which checks the blood glucose levels of patients every few hours.  相似文献   
94.
For utilization of highly sophisticated functions of biomaterials in nano-scale functional systems, immobilization of biomaterials on artificial devices such as electrodes via thin film technology is one of the most powerful strategies. In this review, we focus on three major organic ultrathin films, self-assembled monolayers (SAM), Langmuir-Blodgett (LB) films, and layer-by-layer (LBL) assemblies, and from the viewpoints of biomaterial immobilization, typical examples and recent progresses in these film technologies are described. The SAM method allows facile contact between biomaterials and man-made devices, and well used for bio-related sensors. In addition, recent micro-fabrication techniques such as micro-contact printing and dip-pen nanolithography were successfully applied to preparation of biomaterial patterning. A monolayer at the air-water interface, which is a unit structure of LB films, provides a unique environment for recognition of aqueous biomaterials. Recognition and immobilization of various biomaterials including nucleotides, nucleic acid bases, amino acids, sugars, and peptides were widely investigated. The LB film can be also used for immobilization of enzymes in an ultrathin film on an electrode, resulting in sensor application. The LBL assembling method is available for wide range of biomaterials and provides great freedom in designs of layered structures. These advantages are reflected in preparation of thin-film bio-reactors where multiple kinds of enzymes sequentially operate. LBL assemblies were also utilized for sensors and drug delivery systems. This kind of assembling structures can be prepared on micro-size particle and very useful for preparation of hollow capsules with biological functions.  相似文献   
95.
96.
Using small-angle X-ray scattering (SAXS) we have investigated the shape and size of diglycerol monomyristate (designated as C14G2) nonionic surfactant reverse micelles in aromatic solvent ethylbenzene as a function of surfactant concentration, temperature, and water. When C14G2 is added into ethylbenzene globular type reverse micelles with maximum core diameter ca. 4.5 nm are formed under ambient conditions. The micellar structure (shape and size) did not change with the surfactant concentration. However, an increase in temperature decreased the micellar size due to an increase in the critical packing parameter (cpp). Surfactant becomes more lipophilic upon heating and the micellar curvature tends to become more negative at higher temperature. Addition of a small amount of water caused a significant micellar growth. For instance, incorporation of 0.3% water in the 5% C14G2/ethylbenzene system resulted in the formation of 2.1 time bigger micelles with a small water pool in the micellar core. Besides the micellar shape is modified into an ellipsoidal prolate, whose scenario can be understood in terms of hydration of the surfactant's headgroup. Hydration decreases the cpp and favors micellar growth. An increase of temperature of a water incorporated system decreased the micellar size due to dehydration, which is equivalent to rod-to-sphere type transition.  相似文献   
97.
The humidity correction method prescribed in the existing IEC standard is based on experimental data obtained under absolute humidity between 5 and 12 g/m3. A discussion on the humidity correction method is needed for higher absolute humidity regions, which is experienced during summer in Japan, and also throughout the year in tropical countries. The effect of absolute humidity on disruptive discharge voltages of standard sphere air gaps has been studied experimentally for several years under conditions of natural humidity, between 2 and 22 g/m3. In the cases of a.c. and lightning impulse voltage application, it was found that the existing IEC humidity correction method seems to be proper for most of the gap spacings studied under absolute humidity up to 22 g/m3. Copyright © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   
98.
Europium doped cadmium sulphide (Cd(0.98)Eu(0.2)S) nanostructures were synthesised by chemical co-precipitation method using ethylene glycol (EG) and deionized water (Eu:CdS-1), and isopropyl alcohol (IPA) and deionized water (Eu:CdS-2) as mixed solvents. It has been found that the nanostructure of the europium doped CdS can be controlled by simply varying the mixed solvent system. Powder XRD pattern reveals the formation of hexagonal (wurtzite) and cubic (zinc blende) structure for Eu:CdS-1, and Eu:CdS-2, respectively. The crystallite size of the sample prepared using IPA and deionized water was measured to be 2.64 nm which is much smaller than that of the sample prepared using EG and deionized water as mixed solvent (3.65 nm). Morphology of the materials can also be changed from flower shaped crystals to paddy like structures by varying the mixed solvents. Band gap values of Eu3+ doped CdS nanocrystals synthesized from two different solvents were estimated using UV-reflectance spectra. The size and crystallinity of the samples were confirmed by HRTEM and SAED analysis. A significant change in the PL emission of the CdS nanocrystals was observed for the europium doped CdS which is mainly due to the presence of EU3+ ions which also play a significant role in the energy transfer process. It was also observed that the shift in the emission and efficiency depends on size and shape of the synthesised nanoparticles.  相似文献   
99.
We report on the synthesis of CdSe nanocrystal quantum dots (QDs) of different radii (R). Size dependent optical properties like increase in the confinement energy with decreasing radius for different excitonic transitions are studied. Different excitonic transitions are calculated from the second derivative of UV-vis absorption spectra of as synthesized CdSe QDs. The transitions are assigned to specific states by calculating the transition energies using effective mass approximation. A close matching of the transition energies with the experiment suggesting that the second derivative of the absorption spectra could provide a direct knowledge of the electronic transition for the direct band gap semiconductor quantum dots.  相似文献   
100.
As a non-thermal sterilization process, high-pressure carbon dioxide treatment (HPCT) is considered to be promising. The main sterilizing effect of HPCT is thought to be acidification in cytoplasm of microorganisms. We investigated the tolerance mechanism of Saccharomyces cerevisiae to HPCT with special reference to vacuolar and plasma membrane H(+)-ATPases. HPCT was imposed at 35 degrees C, 4 to 10 MPa, for 10 min. slp1 mutant defective in vacuole morphogenesis was more sensitive to HPCT than its isogenic parent. Concanamycin A, a specific inhibitor of vacuolar H(+)-ATPase (V-ATPase), at 10 microM rendered the parent more HPCT-sensitive to the level of slp1. To confirm further the contribution of V-ATPase to the tolerance against HPCT in S. cerevisiae, we compared vma1 mutant of V-ATPase with its isogenic parent for their HPCT sensitivity. vma1 mutant was more sensitive to HPCT than its parent. Addition of 10 microM vanadate, an inhibitor of plasma membrane H(+)-ATPase (P-ATPase), to the wild type strains also increased the inactivation ratio. These results clearly show that V- and P-ATPases contribute to the tolerance against HPCT in S. cerevisiae by accumulating excess H(+) from cytoplasm to vacuole and excluding H(+) outside of the cell, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号