首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
化学工业   5篇
轻工业   15篇
无线电   1篇
一般工业技术   7篇
自动化技术   1篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   8篇
  2013年   5篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2002年   2篇
  1996年   1篇
排序方式: 共有29条查询结果,搜索用时 0 毫秒
21.
22.
This paper presents a novel technique to synthesize TiC-reinforced iron base (Fe-TiC) functionally graded materials (FGM) using SHS reaction followed by centrifugal casting. The in-situ reinforced Fe-TiC steel composites were prepared by aluminothermic SHS reactions using metal oxides and elemental powders. Ferritic as well as austenitic matrix Fe-TiC composites were obtained by judicious thermite charge composition. FGM microstructure was characterized in terms of TiC area fraction, particle size, and chemical analysis using optical and analytical electron microscopy. The results reveal a gradient of TiC particles across the thickness in the inner face and a particle-free region in the outer surface. Hardness profiles have shown an increasing trend from outer surface to TiC-rich inner surface. Wear studies indicated better wear performance of TiC-rich inner face as compared to particle-free outer surface of ferritic or austenitic steel matrices.   相似文献   
23.
The mixing characteristics and bread-making qualities of flours, reconstituted flours and glutens from a diverse range of wheat cultivars obtained from Canada, France and the UK, were investigated. Simple correlations were calcu-lated among Mixograph parameters, loaf volume, Glu - 1 quality scores, protein content, SDS-sedimentation volume and baking absorption. The results indicate that the mixing properties of flours from cultivars in the medium–strong range are significantly influenced by their protein contents. On the other hand, the mixing properties of ‘extra strong’ or weak flours are relatively less affected by their protein contents, and it appears that the protein quality primarily controls their behaviour during mixing. Gluten samples, other than weak glutens from cvs Riband and Corin, required a longer time to mix to peak dough resistance (PDR) than their corresponding flour or reconstituted flour samples. However, the differences in mixing time were more pronounced between ‘extra strong’ glutens and their corresponding flours or reconstituted flours. The Mixograph parameter PDR showed highly significant ( P< 0·001) correlations with loaf volume for flour, reconstituted flour and gluten samples. In each case, variation in PDR explained more than 65% of the variation in loaf volume, reaching about 83% for glutens. PDR was also significantly correlated with Glu - 1 quality scores. However, the mixing times for flours, reconstituted flours and glutens demonstrated no simple correlations with loaf volume. On the basis of the results, it appears that the 2 g Mixograph PDR value for flour or gluten may be used to assess flour or gluten bread-making quality. It may be used as a viable alternative to the baking test for the evaluation of the baking potential of flour or gluten, as well as an alternative to currently used ‘gel protein’-based pro-cedures for differentiating between ‘strong’ and ‘extra strong’ wheats.  相似文献   
24.
Noodles are one of the staple foods consumed in many Asian countries. Instant noodles have become internationally recognized food, and worldwide consumption is on the rise. The properties of instant noodles like taste, nutrition, convenience, safety, longer shelf-life, and reasonable price have made them popular. Quality factors important for instant noodles are color, flavor, and texture, cooking quality, rehydration rates during final preparation, and the presence or absence of rancid taste after extended storage. Microstructure of dough and noodles has been studied to understand the influence of ingredients and processing variables on the noodle quality by employing scanning electron microscopy. Applications of newer techniques like confocal laser scanning microscopy and epifluorescence light microscopy employed to understand the microstructure changes in dough and noodles have also been discussed. Sincere efforts of researchers are underway to improve the formulation, extend the shelf life, and promote universal fortification of instant noodles. Accordingly, many researchers are exploring the potential of noodle fortification as an effective public health intervention and improve its nutritional properties. This review focuses on the functionality of ingredients, unit operations involved, quality criteria for evaluation, recent trends in fortification, and current knowledge in relation to instant noodles.  相似文献   
25.
The synthesis of BaLn2(1?x)ZnO5:2xTb3+ (Ln = Y, Gd) nanophosphors using solution combustion method with an aim to study the effect of sintering temperature and Tb3+ ions concentration on the luminescent properties has been investigated. Under UV excitation, BaY2(1?x)ZnO5 and BaGd2(1?x)ZnO5 nanoparticles exhibit apparent characteristic green emission from 5D4 state to 7F6?3 states of Tb3+ ions with the strongest at 544 nm. Luminescence concentration quenching could be observed when the Tb3+ ions contents were more than 4 mol% in both nanophosphors. The luminescence decay curves suggest monoexponential behavior of both nanophosphors. X-ray diffraction results confirmed the single-phased orthorhombic structure of both powders belonging to space group Pbnm. TEM analysis indicates the spherical morphology of nanoparticles with average grain size in the range of 85–95 nm. BaY2(1?x)Tb2x ZnO5 and BaGd2(1?x)Tb2x ZnO5 nanophosphors may have potential applications in field emission displays based on their uniform shape, low-cost synthetic route, and diverse luminescent properties.  相似文献   
26.
Metal nitrates are used to synthesize a series of novel Ba2Y1-xV3O11:xSm3+ nanophosphors via urea-assisted solution combustion route. X-ray diffraction (XRD), diffuse reflectance (DR), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy were employed to analyse the structure, morphology, photoluminescent behaviour and energy transfer mechanism. Rietveld analysis over Ba2Y0.98Sm0.02V3O11 showed that Y3+ ions can be well-replaced by trivalent samarium ions without resulting any major alteration in the crystal structure of host lattice. Furthermore, the lattice parameters were determined for both the host as well as the doped composition. The Scherrer equation yielded an average particle size of 44?nm, which in turn was further confirmed by TEM micrographs. The optical band-gap of the host (3.92?eV) was calculated from the diffuse reflectance spectra. Moreover, the photoluminescence spectral studies showed that under near ultra-violet (NUV) excitation of 340?nm, our nanophosphor powder exhibits the characteristic emission peaks of trivalent samarium along with the emission of VO43? (501?nm) group. The excitation energy transfer from vanadate group to Sm3+ produced a systematic color tunablity in white region itself. The optimum Sm3+ concentration for better luminescence was found to be 2?mol%. The critical distance for energy transfer was calculated to be 29.02?Å, which in turn assisted to shortlist the mechanism responsible for luminescence-quenching (dipole-dipole) arising from the over-doping of the activator. The photoluminescence decay curves revealed the decay kinetics of 4G5/2 electronic state. Finally, the calculation of CIE color coordinates from emission spectra in MATLAB program unveiled a somewhat white-light emitter which may find potential applications in phosphor-converted white light emitting diodes (PC-WLED) under near-ultraviolet (NUV) excitation.  相似文献   
27.
Tb3+ doped SrLa2O4 and BaLa2O4 nanophosphors were successfully synthesized via tartaric acid assisted sol–gel method and their luminescent properties were investigated. The crystal structure and morphology of SrLa2O4:Tb3+ and BaLa2O4:Tb3+ was studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). Thermal decomposition behavior of the dried gels was investigated by thermogravimetry (TG) and differential thermal analysis (TGA). Photoluminescence (PL) behaviors of these nanophosphors were checked by the excitation and emission spectra. These SrLa2O4 and BaLa2O4 nanophosphors displayed green color under a UV source due to characteristic transition of Tb3+ from 5D4 → 7F5 at 544 nm. The dependence of photoluminescence intensity on Tb3+ ion concentration, tartaric acid concentration and annealing temperature were also studied in detail. In addition, the optimum doping concentration and time-resolved luminescence spectroscopy were also investigated.  相似文献   
28.
The bovine genome sequence project and the discovery of many thousands of bovine single nucleotide polymorphisms has opened the door for large-scale genotyping studies to identify genes that contribute to economically important traits with relevance to the beef and dairy industries. Large amounts of DNA will be required for these research projects. This study reports the use of the whole-genome amplification (WGA) method to create an unlimited supply of DNA for use in genotyping studies and long-term storage for future gene discovery projects. Two commercial WGA kits (GenomiPhi, Amersham Biosciences, Sydney, Australia, and REPLI-g, Qiagen, Doncaster, Australia) were used to amplify DNA from straws of bull semen, resulting in an average of 7.2 and 67 μg of DNA per reaction, respectively. The comparison of 3.5 kb of sequences from the amplified and unamplified DNA indicated no detectable DNA differences. Similarly, gene marker analysis conducted on genomic DNA and DNA after WGA indicated no difference in marker amplification or clarity and accuracy of scoring for approximately 10,000 single nucleotide polymorphism markers when compared with WGA samples genotyped in duplicate. These results illustrate that WGA is a suitable method for the amplification and recovery of DNA from bull semen samples for routine genomic investigations.  相似文献   
29.
Partially hydrolyzed guar gum was prepared via enzymatic hydrolysis of native guar gum. Partially hydrolyzed guar gum (PHGG) thus obtained after enzymatic hydrolysis contained 80.04% soluble dietary fiber and 83.1% total dietary fiber. In present study, the effect of process variables such as PHGG level (1–5%), water level (30–40%) and mixing time (2–6 min) on response variables i.e. cooking yield, cooking loss and overall acceptability of noodles were studied using response surface methodology. The second order model obtained for cooking yield, cooking loss and overall acceptability of noodles revealed coefficient of determination of 0.9796, 0.9446 and 0.7787, respectively. The optimum values for independent variables i.e. PHGG level, water level and mixing time were 2.23, 32.03% and 2.81 min, respectively. Results showed that noodles with reduced cooking yield, increased cooking loss and improved sensory and textural characteristics were prepared with fortification of 2.23% partially hydrolyzed guar gum as soluble fibre.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号