全文获取类型
收费全文 | 158篇 |
免费 | 11篇 |
国内免费 | 2篇 |
专业分类
化学工业 | 114篇 |
金属工艺 | 5篇 |
机械仪表 | 4篇 |
建筑科学 | 5篇 |
能源动力 | 3篇 |
轻工业 | 15篇 |
无线电 | 1篇 |
一般工业技术 | 16篇 |
冶金工业 | 4篇 |
自动化技术 | 4篇 |
出版年
2022年 | 39篇 |
2021年 | 39篇 |
2020年 | 7篇 |
2019年 | 4篇 |
2018年 | 4篇 |
2017年 | 7篇 |
2016年 | 7篇 |
2015年 | 2篇 |
2014年 | 6篇 |
2013年 | 10篇 |
2012年 | 10篇 |
2011年 | 6篇 |
2010年 | 10篇 |
2009年 | 4篇 |
2008年 | 3篇 |
2007年 | 1篇 |
2006年 | 1篇 |
2005年 | 2篇 |
2004年 | 2篇 |
2003年 | 2篇 |
2002年 | 2篇 |
1999年 | 1篇 |
1986年 | 1篇 |
1982年 | 1篇 |
排序方式: 共有171条查询结果,搜索用时 15 毫秒
51.
Catalysis Letters - Copper(II) on 4 Å molecular sieve was found to be an efficient heterogeneous catalyst in the addition of different H-phosphinates and secondary phosphine oxides to... 相似文献
52.
53.
Kinga Kska Micha Wojciech Szczeniak Adela Adamus Magorzata Czernicka 《International journal of molecular sciences》2021,22(15)
Low oxygen level is a phenomenon often occurring during the cucumber cultivation period. Genes involved in adaptations to stress can be regulated by non-coding RNA. The aim was the identification of long non-coding RNAs (lncRNAs) involved in the response to long-term waterlogging stress in two cucumber haploid lines, i.e., DH2 (waterlogging tolerant—WL-T) and DH4 (waterlogging sensitive—WL-S). Plants, at the juvenile stage, were waterlogged for 7 days (non-primed, 1xH), and after a 14-day recovery period, plants were stressed again for another 7 days (primed, 2xH). Roots were collected for high-throughput RNA sequencing. Implementation of the bioinformatic pipeline made it possible to determine specific lncRNAs for non-primed and primed plants of both accessions, highlighting differential responses to hypoxia stress. In total, 3738 lncRNA molecules were identified. The highest number (1476) of unique lncRNAs was determined for non-primed WL-S plants. Seventy-one lncRNAs were depicted as potentially being involved in acquiring tolerance to hypoxia in cucumber. Understanding the mechanism of gene regulation under long-term waterlogging by lncRNAs and their interactions with miRNAs provides sufficient information in terms of adaptation to the oxygen deprivation in cucumber. To the best of our knowledge, this is the first report concerning the role of lncRNAs in the regulation of long-term waterlogging tolerance by priming application in cucumber. 相似文献
54.
Emilia Piosik Aleksandra Zaryczniak Kinga Mylkie Marta Ziegler-Borowska 《International journal of molecular sciences》2021,22(11)
Understanding the mechanism of interactions between magnetite nanoparticles and phospholipids that form cellular membranes at the molecular level is of crucial importance for their safe and effective application in medicine (e.g., magnetic resonance imaging, targeted drug delivery, and hyperthermia-based anticancer therapy). In these interactions, their surface coating plays a crucial role because even a small modification to its structure can cause significant changes to the behaviour of the magnetite nanoparticles that come in contact with a biomembrane. In this work, the influence of the magnetite nanoparticles functionalized with native and aminated starch on the thermodynamics, morphology, and dilatational elasticity of the model cell membranes was studied. The model cell membranes constituted the Langmuir monolayers formed at the air–water interface of dipalmitoylphosphatidylcholine (DPPC). The surface of the aminated starch-coated nanoparticles was enriched in highly reactive amino groups, which allowed more effective binding of drugs and biomolecules suitable for specific nano–bio applications. The studies indicated that the presence of these groups also reduced to some extent the disruptive effect of the magnetite nanoparticles on the model membranes and improved their adsorption. 相似文献
55.
Aleksandra Majewska Kinga Wilkus Klaudia Brodaczewska Claudine Kieda 《International journal of molecular sciences》2021,22(2)
Endothelial cells (ECs) lining the blood vessels are important players in many biological phenomena but are crucial in hypoxia-dependent diseases where their deregulation contributes to pathology. On the other hand, processes mediated by ECs, such as angiogenesis, vessel permeability, interactions with cells and factors circulating in the blood, maintain homeostasis of the organism. Understanding the diversity and heterogeneity of ECs in different tissues and during various biological processes is crucial in biomedical research to properly develop our knowledge on many diseases, including cancer. Here, we review the most important aspects related to ECs’ heterogeneity and list the available in vitro tools to study different angiogenesis-related pathologies. We focus on the relationship between functions of ECs and their organo-specificity but also point to how the microenvironment, mainly hypoxia, shapes their activity. We believe that taking into account the specific features of ECs that are relevant to the object of the study (organ or disease state), especially in a simplified in vitro setting, is important to truly depict the biology of endothelium and its consequences. This is possible in many instances with the use of proper in vitro tools as alternative methods to animal testing. 相似文献
56.
Beata Kaczmarek Kinga Nadolna Agata Owczarek Olha Mazur Alina Sionkowska Krzysztof ukowicz Jithin Vishnu Geetha Manivasagam Anna M. Osyczka 《IET nanobiotechnology / IET》2020,14(9):830
Scaffolds based on chitosan (CTS), collagen (Coll) and glycosaminoglycans (GAG) mixtures cross‐linked by tannic acid (TA) with bioglass 45S5 addition were obtained with the use of the freeze‐drying method. The prepared scaffolds were characterised for morphology, mechanical strength and degradation rate. Moreover, cell viability on the obtained scaffolds was measured with and without the presence of ascorbic acid and dexamethasone. The main purpose of the research was to compare the effectiveness of bioglass 45S5 influence on the physicochemical and biological properties of scaffolds. The results demonstrated that the scaffolds based on the blends of biopolymers cross‐linked by TA are stable in an aqueous environment. Scanning electron microscope images allowed the observation of a porous scaffold structure with interconnected pores. The addition of bioglass nanoparticles improved the mechanical properties and decreased the degradation rate of composite materials. The biological properties were improved for 20% tannic acid addition compared to 5%. However, the addition of bioglass 45S5 did not change to cells response significantly.Inspec keywords: biomedical materials, drying, porous materials, freezing, tissue engineering, proteins, nanofabrication, bone, scanning electron microscopy, polymers, molecular biophysics, cellular biophysics, nanoparticles, porosityOther keywords: chitosan, collagen, glycosaminoglycans, bioglass 45S5 addition, freeze‐drying method, degradation rate, ascorbic acid, dexamethasone, physicochemical properties, biological properties, porous scaffold structure, bioglass nanoparticles, mechanical properties, tannic acid addition, scanning electron microscopy 相似文献
57.
Cecilie V.Funch Alessandro Palmas Kinga Somlo Emilie H.Valente Xiaowei Cheng Konstantinos Poulios Matteo Villa Marcel A.J.Somers Thomas L.Christiansen 《材料科学技术学报》2021,81(22):67-76
Laser powder bed fusion (L-PBF) was utilized to produce specimens in Ti-6Al-4V,which were subjected to a bi-lamellar heat treatment,which produces microstructures consisting of primary α-lamellae and a fine secondary α-phase inside the inter-lamellar β-regions.The bi-lamellar microstructure was obtained as (i)a direct bi-lamellar heat treatment from the asbuilt condition or (ii) a bi-lamellar heat treatment preceded by a β-homogenization.For the bi-lamellar treatment with β-homogenization,cooling rates in the range 1-500 K/min were applied after homogenization in β-region followed by inter-critical annealing in the α + β region at various temperatures in the range 850-950 ℃.The microstructures were characterized using various microscopical techniques.Mechanical testing with Vickers hardness indentation and tensile testing was performed.The bi-lamellar microstructure was harder when compared to a soft fully lamellar microstructure,because of the presence of fine α-platelets inside the β-lamellae.Final low temperature ageing provided an additional hardness increase by precipitation hardening of the primary α-regions.The age hardened bi-lamellar microstructure shows a similar hardness as the very fine,as-built martensitic microstructure.The bi-lamellar microstructure has more favorable mechanical properties than the as-built condition,which has high strength,but poor ductility.After the bi-lamellar heat treatment,the elongation was improved by more than 250 %.Due to the very high strength of the as-built condition,loss of tensile strength is unavoidable,resulting in a reduction of tensile strength of~18 %. 相似文献
58.
Katarzyna Reczyska-Kolman Kinga Hartman Konrad Kwiecie Monika Brzychczy-Woch Elbieta Pamua 《International journal of molecular sciences》2022,23(1)
Due to growing antimicrobial resistance to antibiotics, novel methods of treatment of infected wounds are being searched for. The aim of this research was to develop a composite wound dressing based on natural polysaccharides, i.e., gellan gum (GG) and a mixture of GG and alginate (GG/Alg), containing lipid nanoparticles loaded with antibacterial peptide—nisin (NSN). NSN-loaded stearic acid-based nanoparticles (NP_NSN) were spherical with an average particle size of around 300 nm and were cytocompatible with L929 fibroblasts for up to 500 µg/mL. GG and GG/Alg sponges containing either free NSN (GG + NSN and GG/Alg + NSN) or NP_NSN (GG + NP_NSN and GG/Alg + NP_NSN) were highly porous with a high swelling capacity (swelling ratio above 2000%). Encapsulation of NSN within lipid nanoparticles significantly slowed down NSN release from GG-based samples for up to 24 h (as compared to GG + NSN). The most effective antimicrobial activity against Gram-positive Streptococcus pyogenes was observed for GG + NP_NSN, while in GG/Alg it was decreased by interactions between NSN and Alg, leading to NSN retention within the hydrogel matrix. All materials, except GG/Alg + NP_NSN, were cytocompatible with L929 fibroblasts and did not cause an observable delay in wound healing. We believe that the developed materials are promising for wound healing application and the treatment of bacterial infections in wounds. 相似文献
59.
Olga M. Koper-Lenkiewicz Kinga Sutkowska Natalia Wawrusiewicz-Kurylonek Ewa Kowalewska Joanna Matowicka-Karna 《International journal of molecular sciences》2022,23(4)
Conducted studies highlight that a mixture of genetic and environmental factors is responsible for rheumatoid arthritis (RA) development. This study aimed to analyze the available literature for the relationship between, on the one hand, single-nucleotide polymorphisms (SNPs) in the proinflammatory cytokines genes interleukin-1 (IL-1), -6, -8, -15, -17, -18, and -23, and tumor necrosis factor-alpha (TNF-α), and on the other hand, RA susceptibility, severity, and patients’ response to applied treatment. The PubMed database was searched for sources. Preference was given to articles which were published within the past 20 years. Data indicate that the relationship between selected SNPs in proinflammatory cytokines genes and susceptibility to developing RA is inconclusive, and it depends on the ethnicity of the population. Although the allelic and genotypic frequencies of many SNPs in proinflammatory cytokines genes analyzed did not differ between RA patients and healthy controls, deeper analysis showed that these polymorphisms have a relationship with clinicopathological features of RA. SNPs in proinflammatory cytokines genes also “modify patients’ response” to applied treatment. Further studies, on larger cohorts of subjects and in different populations, should be conducted to elucidate the role of SNPs in IL-1, -6, -8, -15, -17, -18, and -23, and TNF-α genes in RA patients. 相似文献
60.
Three different KNO3 salts with delta18O values ranging from about -31 to +54 per thousand relative to VSMOW were used to compare three off-line, sealed glass tube combustion methods (widely used for isotope studies) with a more recently developed on-line carbon combustion technique. All methods yielded roughly similar isotope ratios for KNO3 samples with delta18O values in the midpoint of the delta18O scale near that of the nitrate reference material IAEA-NO-3 (around +21 to +25 per thousand). This reference material has been used previously for one-point interlaboratory and intertechnique calibrations. However, the isotope ratio scale factors by all of the off-line combustion techniques are compressed such that they are between 0.3 and 0.7 times that of the on-line combustion technique. The contraction of the 6180 scale in the off-line preparations apparently is caused by O isotope exchange between the sample and the glass combustion tubes. These results reinforce the need for nitrate reference materials with delta18O values far from that of atmospheric O2, to improve interlaboratory comparability. 相似文献