首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38849篇
  免费   13077篇
电工技术   717篇
化学工业   16992篇
金属工艺   304篇
机械仪表   693篇
建筑科学   1679篇
能源动力   822篇
轻工业   7150篇
水利工程   283篇
石油天然气   43篇
无线电   6916篇
一般工业技术   11468篇
冶金工业   548篇
自动化技术   4311篇
  2024年   3篇
  2023年   4篇
  2022年   5篇
  2021年   269篇
  2020年   2086篇
  2019年   3153篇
  2018年   3082篇
  2017年   3403篇
  2016年   3860篇
  2015年   3938篇
  2014年   3837篇
  2013年   4916篇
  2012年   2636篇
  2011年   2262篇
  2010年   2580篇
  2009年   2459篇
  2008年   2008篇
  2007年   1852篇
  2006年   1614篇
  2005年   1344篇
  2004年   1314篇
  2003年   1289篇
  2002年   1236篇
  2001年   1081篇
  2000年   1054篇
  1999年   440篇
  1998年   42篇
  1997年   36篇
  1996年   13篇
  1995年   7篇
  1994年   13篇
  1993年   10篇
  1992年   8篇
  1991年   11篇
  1990年   11篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1978年   6篇
  1977年   4篇
  1976年   2篇
  1972年   1篇
  1967年   1篇
  1890年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
131.
Organic semiconductors are the centerpiece of several vibrant research fields from single‐molecule to organic electronics, and they are finding increasing use in bioelectronics and even classical polymer technology. The versatile chemistry and broad range of electronic functionalities of conjugated materials enable the bridging of length scales 15 orders of magnitude apart, ranging from a single nanometer (10?9 m) to the size of continents (106 m). This work provides a taste of the diverse applications that can be realized with organic semiconductors. The reader will embark on a journey from single molecular junctions to thin film organic electronics, supramolecular assemblies, biomaterials such as amyloid fibrils and nanofibrillated cellulose, conducting fibers and yarns for e‐textiles, and finally to power cables that shuffle power across thousands of kilometers.  相似文献   
132.
Van der Waals (vdW) epitaxy allows the fabrication of various heterostructures with dramatically released lattice matching conditions. This study demonstrates interface‐driven stacking boundaries in WS2 using epitaxially grown tungsten disulfide (WS2) on wrinkled graphene. Graphene wrinkles function as highly reactive nucleation sites on WS2 epilayers; however, they impede lateral growth and induce additional stress in the epilayer due to anisotropic friction. Moreover, partial dislocation‐driven in‐plane strain facilitates out‐of‐plane buckling with a height of 1 nm to release in‐plane strain. Remarkably, in‐plane strain relaxation at partial dislocations restores the bandgap to that of monolayer WS2 due to reduced interlayer interaction. These findings clarify significant substrate morphology effects even in vdW epitaxy and are potentially useful for various applications involving modifying optical and electronic properties by manipulating extended 1D defects via substrate morphology control.  相似文献   
133.
2D MoS2 nanostructures have recently attracted considerable attention because of their outstanding electrocatalytic properties. The synthesis of unique Co–Ru–MoS2 hybrid nanosheets with excellent catalytic activity toward overall water splitting in alkaline solution is reported. 1T′ phase MoS2 nanosheets are doped homogeneously with Co atoms and decorated with Ru nanoparticles. The catalytic performance of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is characterized by low overpotentials of 52 and 308 mV at 10 mA cm?2 and Tafel slopes of 55 and 50 mV decade?1 in 1.0 m KOH, respectively. Analysis of X‐ray photoelectron and absorption spectra of the catalysts show that the MoS2 well retained its metallic 1T′ phase, which guarantees good electrical conductivity during the reaction. The Gibbs free energy calculation for the reaction pathway in alkaline electrolyte confirms that the Ru nanoparticles on the Co‐doped MoS2 greatly enhance the HER activity. Water adsorption and dissociation take place favorably on the Ru, and the doped Co further catalyzes HER by making the reaction intermediates more favorable. The high OER performance is attributed to the catalytically active RuO2 nanoparticles that are produced via oxidation of Ru nanoparticles.  相似文献   
134.
135.
136.
Controllable synthesis of ultrasmall atomically ordered intermetallic nanoparticles is a challenging task, owing to the high temperature commonly required for the formation of intermetallic phases. Here, a metal–organic framework (MOF)‐confined co‐reduction strategy is developed for the preparation of sub‐2 nm intermetallic PdZn nanoparticles, by employing the well‐defined porous structures of calcinated ZIF‐8 (ZIF‐8C) and an in situ co‐reduction therein. HAADF‐STEM, HRTEM, and EDS characterizations reveal the homogeneous dispersion of these sub‐2 nm intermetallic PdZn nanoparticles within the ZIF‐8C frameworks. XRD, XPS, and EXAFS measurements further confirm the atomically ordered intermetallic phase nature of these sub‐2 nm PdZn nanoparticles. Selective hydrogenation of acetylene evaluation results show the excellent catalytic properties of the sub‐2 nm intermetallic PdZn, which result from the energetically more favorable path for acetylene hydrogenation and ethylene desorption over the ultrasmall particles than over larger‐sized intermetallic PdZn as revealed by density functional theory (DFT) calculations. Moreover, this protocol is also extendable for the preparation of sub‐2 nm intermetallic PtZn nanoparticles and is expected to provide a novel methodology in synthesizing ultrasmall atomically ordered intermetallic nanomaterials by rationally functionalizing MOFs.  相似文献   
137.
138.
The complexity of communication networks and the amount of information transferred in these networks have made the management of such networks increasingly difficult. Since faults are inevitable, quick detection, identification, and recovery are crucial to make the systems more robust and their operation more reliable. This paper proposes a novel event correlation scheme for fault identification in communication networks. This scheme is based on the algebraic operations of sets. The causality graph model is used to describe the cause‐and‐effect relationships between network events. For each disorder, and each manifestation, a unique prime number is assigned. The use of the greatest common devisor (GCD) makes the correlation process simple and fast. A simulation model is developed to verify the effectiveness and efficiency of the proposed scheme. From simulation results, we notice that this scheme not only identifies multiple disorders at one time but also is insensitive to noise. The time complexity of the correlation process is close to a function of n, where n is the number of observed manifestations, with order O(n2); therefore, the on‐line fault identification is easy to achieve. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
139.
Spectroscopic Ellipsometry is a fast, non‐destructive and reliable method for characterizing thin films, based on interaction between incident light and a multilayer system. For our investigations, light in the visible spectral range has been used to characterize protective carbon coatings with thicknesses of 2‐7nm on magnetic hard disks. The specific disk layer stack has been described with an adequate one‐layer model. With regard to an accurate analysis of the covering carbon coating a reproducible procedure for determining the underlying metallic material has been developed. The measured ellipsometric parameters (ψ, Δ) display a linear dependence on carbon film thickness which shows an appropriate application of the used model down to a thickness of 2 nm. By means of simulation calculations, criteria for the selection of optimized wavelengths with respect to film characterization has been established. Furthermore, an increasing extinction coefficient κ with rising nitrogen content in the carbon coating could be stated. Apparent time instabilities in the determination of layer thickness d and extinction coefficient κ of the carbon film could be explained as due to adsorption processes on the surface.  相似文献   
140.
The hepatopancreas of crustaceans species has been recognized as an essential target organ to assess trace elements' effects. Due to its dynamic and capability of detoxifying trace metal, this organ often indicates distinct pathological disturbances. In the present work, we intend to evaluate the bioaccumulation of trace metal in three Orchestia species (Orchestia montagui, Orchestia gammarellus, and Orchestia mediterranea) living in symmetry in the banks of Bizerte lagoon (37°13′8″N 09°55′1″E) after their exposure during 14 days to a mixture of copper and zinc, and to highlight the effect of these metals on their hepatopancreas ultrastructure using transmission electron microscopy. At the end of the experiment, results showed that the mortality and the body mass varied according to the used nominal concentrations. Significant alterations were noted in all the treatment groups. The degree of these alterations depends on the used concentration, and they are represented especially by the cells remoteness and the border lyses, the reduction of the nuclear volume, the increase in the cytoplasm density with the presence of trace metal in the nucleus as well as in the vacuole, the disorganization and the destruction of microvilli, the condensation of the majority of cellular organelles and mitochondria swelling. Through this study, Orchestia genus could be an attractive candidate for the biochemical study of trace metal toxicity in Tunisian wetlands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号