首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   656篇
  免费   42篇
  国内免费   4篇
电工技术   5篇
综合类   1篇
化学工业   177篇
金属工艺   17篇
机械仪表   16篇
建筑科学   10篇
能源动力   30篇
轻工业   73篇
水利工程   2篇
石油天然气   3篇
无线电   80篇
一般工业技术   164篇
冶金工业   25篇
原子能技术   5篇
自动化技术   94篇
  2024年   3篇
  2023年   21篇
  2022年   25篇
  2021年   44篇
  2020年   49篇
  2019年   24篇
  2018年   35篇
  2017年   37篇
  2016年   32篇
  2015年   21篇
  2014年   48篇
  2013年   63篇
  2012年   25篇
  2011年   47篇
  2010年   35篇
  2009年   23篇
  2008年   17篇
  2007年   23篇
  2006年   18篇
  2005年   9篇
  2004年   12篇
  2003年   17篇
  2002年   8篇
  2001年   5篇
  2000年   8篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1972年   1篇
排序方式: 共有702条查询结果,搜索用时 15 毫秒
91.
Sugar amino acid (SAA)‐based foldamers with well‐defined secondary structures were appended with N‐acetylgalactosamine (GalNAc) sugars to access sequence‐defined, multidentate glycoconjugates with full control over number, spacing and position. Conformation analysis of these glycopeptides by extensive NMR spectroscopic studies revealed that the appended GalNAc units had a profound influence on the native conformational behaviour of the SAA foldamers. Whereas the 2,5‐cis glycoconjugate showed a helical structure in water, comprising of two consecutive 16‐membered hydrogen bonds, its 2,5‐trans congener displayed an unprecedented 16/10‐mixed turn structure not seen before in any glycopeptide foldamer.  相似文献   
92.
Polydimethylsiloxane (PDMS) is hailed as one of the foundational materials for microfluidics. Though a silicone-based elastomer of many desirable properties, the emergence of microfluidic fabrication techniques, especially soft lithography, has elevated its status to an exceptional one. In this mini review, we look at the salient aspects that make PDMS so special in achieving such a coveted status in the microfluidics community. A methodical approach is followed to touch upon the application of PDMS in various aspects of microfluidics with the advantages, limitations, and some future directions. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48958.  相似文献   
93.
In the present study, a comprehensive assessment of the spatio-temporal variation of day-time and night-time land surface temperature (LST) and normalized difference vegetation index (NDVI) of Vadodara district of Gujarat in India from 2001 to 2012 has been carried out using satellite data. A significant cooling trend was observed in the day-time LST, whereas the night-time LST showed a distinct warming trend. The entire geographical extent of Vadodara was classified into different night-time LST classes to quantify the extent of the hot pockets, and it showed a clear-cut warming pattern for all the months of the year with an increase in the geographical areas under higher temperature range. Further analysis of Diurnal Temperature Range (DTR) also revealed a strong impact of the urbanization process, with annual DTR showing a decreasing trend at the rate of 0.29°C year?1. An analysis of the vegetation cover of the district showed that on an average, the NDVI of the district increased during the study period. However, a micro-level examination of NDVI values depicted that the type of vegetation cover had drastically changed. The maximum NDVI values for months from May to December for 2012 were much lower than those of 2001 and 2006, indicating a change in vegetation pattern of the district. An assessment of the area under different NDVI values exhibited that for all the months of the year (except September), the total area with NDVI values of higher range (i.e. +0.5 and above) had substantially decreased from 2001 to 2012. The analysis revealed that for some of the months like February, while in 2001, 45% of district exhibited NDVI values above +0.5, but by 2012, it had decreased to only 18%, showing a drastic change in vegetation type and deterioration of the extent of thick dense vegetation.  相似文献   
94.
Photonic Network Communications - This paper depicts the design of 0.55 Tb/s heterogeneous Flexi-rate Nyquist-wavelength division multiplexed (Nyquist-WDM) Superchannel. Here, for the...  相似文献   
95.
This paper deals with the effects of introducing multiwall carbon nanotubes (MWCNTs) into photoanodes of dye sensitized solar cells (DSSCs). Mesoporous titanium dioxide (TiO2) nanoparticles were synthesized using sol–gel technique. TiO2/MWCNT composites were prepared by adding functionalized MWCNTs to TiO2 nanoparticles using two different surfactants (α-terpineol and Triton X-100). Nanoparticles and composites were characterized using Dynamic Light Scattering spectrophotometer, Raman spectrometer, X-ray diffractometer, field emission scanning electron microscope, Brunauer–Emmett–Teller surface area analyzer and UV–Vis spectrophotometer. FESEM depicted that particles were spherical in shape and their size decreased due to addition of MWCNTs. This was attributed to the decrease in the crystallite size which in turn confirmed by XRD. UV–Vis absorption spectra showed the better absorbance for the visible range of light, as the content of MWCNT is increased. From the Tauc plot optical band gap was calculated and noted that it declined gradually with the content of MWCNTs. BET surface area increased drastically which was attributed to the formation of more number of pores in the nanocomposites as visualized from FESEM. UV–Vis spectra of dye desorbed from the photoanode revealed that the dye adsorption increased as a function of MWCNT wt%. I–V studies were carried out under the illumination of 100 mW/cm2 simulated sunlight. Photoanodes prepared by both the methods showed better performance compared to pristine TiO2 photoanode, because of high conducting path and high surface area provided by MWCNTs. Photoanodes with 0.19 wt% MWCNTs in them were able to achieve maximum efficiency of 3.54 and 3.86% for method A and B respectively.  相似文献   
96.
The present paper attempts to report the preparation of TiO2–ZnO nanocomposite photoanode materials for dye-sensitized solar cells (DSSC) and analyse the efficiency of DSSC with natural dyes. The structural and optical characteristics of the composites were studied by transmission electron microscopy, X-ray diffraction, field effective scanning electron microscopy, energy dispersive spectrometry, photoluminescence and absorption spectroscopy. The synthesized nanocomposites formed on FTO substrates are applied as photoanode in a dye-sensitized solar cell (DSC). The natural dyes extracted from Beta vulgaris (Beetroot) and Syzygium cumini (black plum) were used in the fabrication of DSSC. The solar cells’ photovoltaic performance in terms of short-circuit current, open circuit voltage, fill factor and energy conversion efficiency was tested with photocurrent density–voltage measurements. The evolution of the solar cells parameters is explored as a function of the photoanode and type of dye used in DSSC fabrication.The obtained results show that the efficiency of DSSC significantly changes with the addition of ZnO to TiO2, while the Beta vulgaris dye has evidently shown higher photo sensitized performance compared to Syzygium cumini in the preparation of DSSC.  相似文献   
97.
In the present study, gas metal arc welding and flux cored arc welding were applied on SA516 Gr70 carbon steel material. Two different hybrid passes were applied, wherein flux cored wire and solid wire were applied to root pass and filler pass one by one and vice versa. Besides, two more welds of similar electrode root pass and filler pass of flux cored arc welding and gas metal arc welding were acquired. The comparative analysis was carried out in terms of macrostructure and microstructure examination, tensile testing, hardness variations, and impact testing for these classical welds and hybrid welds. The results reveal that, hybrid welds lead to better impact properties relative to classical welds. Maximum angular distortion of 2.66° was reported with classical weld of gas metal arc welding with solid wire root pass and same filler pass. The maximum impact toughness of 49 J/m3 was reported for flux cored root pass and solid wire filler pass at the weld zone. Maximum tensile strength of 596 MPa was reported for hybrid weld of solid root pass and flux cored filler pass. Microstructures are reported with the presence of different acicular ferrite and grain boundary ferrite. Maximum acicular ferrite of 61% was reported with classical weld of flux cored arc welding.  相似文献   
98.
The present paper reports the effect of B- and BN-doped \(\hbox {C}_{60}\) as catalysts for lowering the dehydrogenation energy in \(\hbox {MXH}_{4}\) clusters (M = Na and Li, X = Al and B) using density functional calculations. \(\hbox {MXH}_{4}\) interacts strongly with B-doped \(\hbox {C}_{60}\) and weakly with BN-doped \(\hbox {C}_{60}\) in comparison with pure \(\hbox {C}_{60}\) with binding energy 0.56–0.80 and 0.05–0.34 eV, respectively. The hydrogen release energy \((E_{\mathrm{HRE}})\) of \(\hbox {MXH}_{4}\) decreases sharply in the range of 38–49% when adsorbed on B-doped \(\hbox {C}_{60}\); however, with BN-doped \(\hbox {C}_{60}\) the decrease in the \(E_{\mathrm{HRE}}\) varies in the range of 6–20% as compared with pure \(\hbox {MXH}_{4}\) clusters. The hydrogen release energy of second hydrogen atom in \(\hbox {MXH}_{4}\) decreases sharply in the range of 1.7–41% for BN-doped \(\hbox {C}_{60}\) and decreases in the range of 0.2–11.3% for B-doped \(\hbox {C}_{60}\) as compared with pure \(\hbox {MXH}_{4}\) clusters. The results can be explained on the basis of charge transfer within \(\hbox {MXH}_{4}\) cluster and with the doped \(\hbox {C}_{60}\).  相似文献   
99.
Engineering catalytically active sites have been a challenge so far and often relies on optimization of synthesis routes, which can at most provide quantitative enhancement of active facets, however, cannot provide control over choosing orientation, geometry and spatial distribution of the active sites. Artificially sculpting catalytically active sites via laser-etching technique can provide a new prospect in this field and offer a new species of nanocatalyst for achieving superior selectivity and attaining maximum yield via absolute control over defining their location and geometry of every active site at a nanoscale precision. In this work, a controlled protocol of artificial surface engineering is shown by focused laser irradiation on pristine MoS2 flakes, which are confirmed as catalytic sites by electrodeposition of AuNPs. The preferential Au deposited catalytic sites are found to be electrochemically active for nitrogen adsorption and its subsequent reduction due to the S-vacancies rather than Mo-vacancy, as advocated by DFT analysis. The catalytic performance of Au-NR/MoS2 shows a high yield rate of ammonia (11.43 × 10−8 mol s−1 cm−2) at a potential as low as −0.1 V versus RHE and a notable Faradaic efficiency of 13.79% during the electrochemical nitrogen reduction in 0.1 m HCl.  相似文献   
100.
This paper puts forward a newer approach for structural shape optimization by combining a meshless method (MM), i.e. element-free Galerkin (EFG) method, with swarm intelligence (SI)-based stochastic ‘zero-order’ search technique, i.e. artificial bee colony (ABC), for 2D linear elastic problems. The proposed combination is extremely beneficial in structural shape optimization because MM, when used for structural analysis in shape optimization, eliminates inherent issues of well-known grid-based numerical techniques (i.e. FEM) such as mesh distortion and subsequent remeshing while handling large shape changes, poor accuracy due to discontinuous secondary field variables across element boundaries needing costly post-processing techniques and grid optimization to minimize computational errors. Population-based stochastic optimization technique such as ABC eliminates computational burden, complexity and errors associated with design sensitivity analysis. For design boundary representation, Akima spline interpolation has been used in the present work owing to its enhanced stability and smoothness over cubic spline. The effectiveness, validity and performance of the proposed technique are established through numerical examples of cantilever beam and fillet geometry in 2D linear elasticity for shape optimization with behavior constraints on displacement and von Mises stress. For both these problems, influence of a number of design variables in shape optimization has also been investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号