首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1401篇
  免费   23篇
  国内免费   7篇
电工技术   127篇
综合类   2篇
化学工业   458篇
金属工艺   29篇
机械仪表   29篇
建筑科学   30篇
能源动力   66篇
轻工业   126篇
水利工程   3篇
无线电   76篇
一般工业技术   256篇
冶金工业   81篇
原子能技术   39篇
自动化技术   109篇
  2023年   9篇
  2022年   8篇
  2021年   22篇
  2020年   7篇
  2019年   8篇
  2018年   23篇
  2017年   16篇
  2016年   22篇
  2015年   14篇
  2014年   18篇
  2013年   74篇
  2012年   41篇
  2011年   55篇
  2010年   47篇
  2009年   79篇
  2008年   59篇
  2007年   76篇
  2006年   60篇
  2005年   57篇
  2004年   64篇
  2003年   54篇
  2002年   42篇
  2001年   47篇
  2000年   48篇
  1999年   30篇
  1998年   48篇
  1997年   43篇
  1996年   34篇
  1995年   31篇
  1994年   21篇
  1993年   23篇
  1992年   19篇
  1991年   17篇
  1990年   12篇
  1989年   21篇
  1988年   13篇
  1987年   20篇
  1986年   22篇
  1985年   19篇
  1984年   15篇
  1983年   16篇
  1982年   14篇
  1981年   7篇
  1980年   6篇
  1979年   15篇
  1977年   8篇
  1976年   6篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
排序方式: 共有1431条查询结果,搜索用时 21 毫秒
31.
Diurnal variations of fossil secondary organic carbon (SOC) and nonfossil SOC were determined for the first time using a combination of several carbonaceous aerosol measurement techniques, including radiocarbon (1?C) determinations by accelerator mass spectrometry, and a receptor model (chemical mass balance, CMB) at a site downwind of Tokyo during the summer of 2007. Fossil SOC showed distinct diurnal variation with a maximum during daytime, whereas diurnal variation of nonfossil SOC was relatively small. This behavior was reproduced by a chemical transport model (CTM). However, the CTM underestimated the concentration of anthropogenic secondary organic aerosol (ASOA) by a factor of 4-7, suggesting that ASOA enhancement during daytime is not explained by production from volatile organic compounds that are traditionally considered major ASOA precursors. This result suggests that unidentified semivolatile organic compounds or multiphase chemistry may contribute largely to ASOA production. As our knowledge of production pathways of secondary organic aerosol (SOA) is still limited, diurnal variations of fossil and nonfossil SOC in our estimate give an important experimental constraint for future development of SOA models.  相似文献   
32.
A simple method for obtaining silica foam has been developed by combining sol-gel reaction and mechanical foaming without added organic pore formers, in order to reduce generation of CO2 and harmful gases by decomposition of the organic compounds. The silica foam was prepared by mechanically foaming the silica sol and controlling the viscosity change and gelling. The gelation time of the silica sol can be varied from 10 minutes to 3 hours by changing the pH, temperature and concentration of the surfactant added as a foam stabilizer. The dried silica gel foam was calcined at 600°C then fired at 1000°C to obtain sintered silica foam. The porosity and average pore size of the silica foam was 84% and 140 m, respectively. The bending strength and gas permeability of the sintered silica foam was 2.4 MPa and 9.4 × 10–11 m2, respectively.  相似文献   
33.
The mechanical properties of a textured alumina made by high-temperature deformation of normal-purity sintered alumina have been investigated. The textured alumina shows very high bending strength and extremely high fracture toughness. Fracture toughness of more than 10 MPa·m1/2 was measured by the single-edge precracked beam method, and even using the single-edge V-notched beam method, toughness of over 8 MPa·m1/2 was obtained. This high fracture toughness was attributed to a large number of aligned small platelike grains of the textured structure enhancing the grain bridging effect.  相似文献   
34.
LaSi3N5:Eu2+ phosphor powders were prepared by a highly efficient combustion synthesis method. It was found that the compositions of the raw powder mixtures had great influences on the phase compositions and particle morphologies of the synthesized powders. By selecting appropriate starting compositions and combustion parameters, single phase LaSi3N5:Eu2+ phosphors could be synthesized. When excited by a UV light, the LaSi3N5:Eu2+ phosphors emitted green light. The wavelength and intensity of the emission spectra were affected by the amount of Eu2+ dopant. With increasing amount of Eu2+ dopant, concentration quenching could occur and emission spectra shifted to longer wavelengths.  相似文献   
35.
Silicon nitride ceramics were prepared from a high‐purity silicon powder doped with 2 mol% Y2O3 and 5 mol% MgO as sintering additives via a route of sintering of reaction‐bonded silicon nitride (SRBSN). The materials sintered at 1900°C for 3, 6, 12, and 24 h had thermal conductivities of 109, 125, 146, and 154 W/m/K, and four‐point bending strengths of 786, 676, 608, and 505 MPa, respectively. The fracture toughness values, determined by the single‐edge‐precracked‐beam (SEPB) method, were 8.4, 8.6, 9.7, and 10.7 MPa m1/2 for the materials sintered for 3, 6, 12, and 24 h, respectively, which were similar to the results measured by the chevron‐notched‐beam (CNB) test method. The materials sintered for longer times (12 and 24 h) showed stronger R‐curve behaviors over longer range of crack extension, in comparison with the materials sintered for shorter times (3 and 6 h).  相似文献   
36.
Unpolarized optical spectra were measured in the wavelength range 322–1666 nm by the diffuse reflection technique from spinel powders synthesized in the system MgAl2O4–MgCr2O4. The spectra were interpreted by the crystal-field theory on the basis of trigonally distorted spinel octahedra with D3d symmetry. For chromium-rich solid solutions, including the MgCr2O4 end-member, results after peak fittings showed octahedral D3d local symmetry around Cr3+ ions, identical to the crystallographic site symmetry. For chromium-poor solid solutions, however, octahedral C3v local symmetry was suggested around Cr3+ ions, different from the D3d crystallographically expected.  相似文献   
37.
Microstructural analysis of MgO—MgAl2O4 refractory bricks corroded at 1400–1450°C by calcium aluminosilicate slag reveals secondary spinel, monticellite, merwinite, and MgO as microscopic corrosion products, generally forming in this sequence as the brick is penetrated. The secondary spinel forms an incomplete layer close to (but not at) the MgO grain. Thermodynamic calculations are used to support a detailed model of the corrosion mechanism.  相似文献   
38.
Silicon nitride (Si3N4) was prepared from silicon by a sintered reaction-bonded silicon nitride method using yttria and magnesia as sintering additives. Post-sintering (PS) of nitrided compacts was carried out at 1850°C under a nitrogen pressure of 1 MPa. Effect of PS time on microstructure and dielectric breakdown strength (DBS) of the prepared Si3N4 ceramics was evaluated. The DBS was measured using specimens with four different thicknesses (0.30, 0.20, 0.10, and 0.05 mm) in order to examine the thickness dependence. The porosity of the sintered Si3N4 decreased by prolonging the PS time, and the full density could be achieved at the PS time of over 6 h. After full densification, rod-like β-Si3N4 grains grew up, and their maximum grain size increased from 45.1 to 154.7 μm by prolonging the PS time from 6 to 48 h. The DBS of the thick Si3N4 substrates (0.30 mm) showed little variation from 35.4 to 47.0 kV/mm, regardless of the PS time. On the other hand, that of the thin ones (0.05 mm) dramatically decreased from 99.5 to 9.8 kV/mm with increased the PS time from 6 to 48 h. Because the DBS sharply decreased at the thin substrate sintered for longer time in which some large-elongated grains might span the substrate thickness-wise throughout, it was inferred that the interface between β-Si3N4 grains and grain boundary phase/intergranular glassy films might be a path of the dielectric breakdown.  相似文献   
39.
Aluminum nitride (AlN)–silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g−1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich phases. The formation of homogeneous solid solution proceeded with increasing nitridation temperature from 1400° up to 1500°C. The specific surface area of the AlN–SiC powder nitrided at 1500°C for 3 h was 19.5 m2·g−1, whereas the primary particle size (assuming spherical particles) was estimated to be ∼100 nm.  相似文献   
40.
The catalytic activity of LaCoO3–-based mixed oxides for the oxidative coupling of methane has been tested by TPR and cyclic reaction. Characterization has been done by XRD, TGA and Mössbauer spectrometry. It is likely that the perovskite-crystal structure containing hypervalent metal ions has an important role and that unique structural oxygen species in the perovskite contribute to the partial oxidation of methane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号