首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1197篇
  免费   16篇
  国内免费   3篇
电工技术   105篇
综合类   2篇
化学工业   399篇
金属工艺   25篇
机械仪表   30篇
建筑科学   31篇
能源动力   63篇
轻工业   117篇
水利工程   1篇
无线电   74篇
一般工业技术   229篇
冶金工业   28篇
原子能技术   31篇
自动化技术   81篇
  2023年   9篇
  2022年   6篇
  2021年   21篇
  2020年   8篇
  2019年   14篇
  2018年   20篇
  2017年   15篇
  2016年   19篇
  2015年   15篇
  2014年   20篇
  2013年   62篇
  2012年   35篇
  2011年   49篇
  2010年   44篇
  2009年   73篇
  2008年   51篇
  2007年   68篇
  2006年   53篇
  2005年   53篇
  2004年   57篇
  2003年   45篇
  2002年   38篇
  2001年   36篇
  2000年   41篇
  1999年   24篇
  1998年   25篇
  1997年   23篇
  1996年   22篇
  1995年   23篇
  1994年   13篇
  1993年   17篇
  1992年   16篇
  1991年   17篇
  1990年   13篇
  1989年   16篇
  1988年   11篇
  1987年   16篇
  1986年   19篇
  1985年   19篇
  1984年   11篇
  1983年   13篇
  1982年   10篇
  1981年   6篇
  1980年   5篇
  1979年   13篇
  1977年   7篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
排序方式: 共有1216条查询结果,搜索用时 15 毫秒
991.
    
The liquid crystalline (LC) order was introduced on aluminum nitride particles by the surface effect to increase the thermal conductivities of aluminum nitride/LC epoxy composites. X-ray diffraction and grazing incidence small-angle X-ray scattering analyses revealed that the LC epoxy resin cured on the surface of an α-Al2O3 substrate formed homeotropically aligned smectic layers to increase the thermal conductivity. Therefore, thermally treated aluminum nitride particles, which formed α-Al2O3 layers on their surfaces, were applied to prepare the composites with high thermal conductivity. The thermal conductivities of the resulting composites were 11–36% higher than those with the composites prepared using untreated aluminum nitride particles.  相似文献   
992.
Stroke is a major cause of mortality and disability worldwide. The main cause of stroke is atherosclerosis, and the most common risk factor for atherosclerosis is hypertension. Therefore, antihypertensive treatments are recommended for the prevention of stroke. Three angiotensin receptor blockers (ARBs), telmisartan, irbesartan and candesartan, inhibit the expression of the receptor for advanced glycation end-products (RAGE), which is one of the pleiotropic effects of these drugs. High mobility group box 1 (HMGB1) is the ligand of RAGE, and has been recently identified as a lethal mediator of severe sepsis. HMGB1 is an intracellular protein, which acts as an inflammatory cytokine when released into the extracellular milieu. Extracellular HMGB1 causes multiple organ failure and contributes to the pathogenesis of hypertension, hyperlipidemia, diabetes mellitus, atherosclerosis, thrombosis, and stroke. This is the first review of the literature evaluating the potential of three ARBs for the HMGB1-RAGE axis on stroke therapy, including prevention and acute treatment. This review covers clinical and experimental studies conducted between 1976 and 2013. We propose that ARBs, which inhibit the HMGB1/RAGE axis, may offer a novel option for prevention and acute treatment of stroke. However, additional clinical studies are necessary to verify the efficacy of ARBs.  相似文献   
993.
Solid solutions of 12CaO·7Al2O3 (C12A7) and 12SrO·7Al2O3 (S12A7) crystals were synthesized under high pressure. X‐ray diffraction patterns revealed that the lattice constants of the synthesized samples depend linearly on the compositional ratio of C12A7 and S12A7. Electron‐probe X‐ray microanalyses show that the chemical compositions of the crystals are represented by xC12A7·(1?x)S12A7 (0<x<1). These results indicate that the variation in the lattice constants is originated from a difference in the ionic radii of Ca2+ and Sr2+ ions. From impedance measurements, it was found that S12A7 has the highest conductivity (~1 × 10?3 Scm?1 at 550°C) among the solid solutions in the C12A7–S12A7 system.  相似文献   
994.
An Na+/Ca2+‐deficient layer is observed to form on the glass surface region up to a depth of hundreds of nanometers when a soda‐lime‐silicate glass is heat treated under an N2 atmosphere near its glass‐transition temperature. The measurements were performed using X‐ray photoelectron spectroscopy with C60‐ion sputtering (C60‐XPS) and dynamic secondary‐ion mass spectrometry (D‐SIMS) with consideration of the mass and charge balances. The increase in the amount of hydrogen is substantially less than the decrease in the total charge due to the loss of modifier cations in the Na+/Ca2+‐deficient layer; furthermore, the oxygen concentration in this layer is lower than the bulk value, suggesting that the silanol groups in the surface layer of the glass are dehydrated. A high‐concentration layer of Ca2+ is also confirmed in the dehydration layer of the glass heat treated under an N2 atmosphere, suggesting that Na+ and Ca2+ ions migrate inward into the glass via an ion‐exchange reaction with protons, which migrate toward the surface from the bulk. We also confirmed that a thicker Na+/Ca2+‐deficient layer is formed on glass surfaces with higher water content. Our results suggest that the dehydration of the silanol groups is the driving force of the inward migration of Na+ and Ca2+ ions.  相似文献   
995.
The catalytic performance and the behavior of NOx storage and reduction (NSR) over a model catalyst for lean-burn gasoline engines have been mainly investigated and be discussed based on the temperature and reducing agents use in this study. The experimental results have shown that the NOx storage amount in the lean atmosphere was the same as the NOx reduction amount from the subsequent rich spike (RS) above the temperature of 400 °C, while the former was greater than the latter below the temperature of 400 °C. This indicated that when the temperature was below 400 °C compared with the NOx storage stage, the reduction of the stored NOx is somehow restricted. We found that the reduction efficiencies with the reducing agents decrease in the order H2 > CO > C3H6 below 400 °C, thus not all of the NOx storage sites could be fully regenerated even using an excessive reducing agent of CO or C3H6, which was supplied to the NSR catalyst, while all the NOx storage sites could be fully regenerated if an adequate amount of H2 was supplied. We also verified that the H2 generation more favorably occurred through the water gas shift reaction than through the steam reforming reaction. This difference in the H2 generation could reasonably explain why CO was more efficient for the reduction of the stored NOx than C3H6, and hinted as a promising approach to enhance the low-temperature performance of the current NSR catalysts though promoting the H2 generation reaction.  相似文献   
996.
The rapid expansion from a supercritical solution with a nonsolvent (RESS‐N) was applied to the formation of polymeric microcapsules containing medicines such as p‐acetamidophenol, acetylsalicylic acid, 1,3‐dimethylxanthine, flavone, and 3‐hydroxyflavone. A suspension of medicine in carbon dioxide (CO2) containing a cosolvent and dissolved polymer was sprayed through a nozzle to atmospheric pressure. The pre‐expansion pressure was 10–25 MPa, and the temperature was 308–333 K. The polymers were poly(L ‐lactic acid) (molecular weight = 5000), poly(ethylene glycol) (PEG; PEG4000, molecular weight = 3000; PEG6000, molecular weight = 7500; and PEG20000, molecular weight = 20,000), poly(methyl methacrylate) (molecular weight = 15,000), ethyl cellulose (molecular weight = 5000), and PEG–poly(propylene glycol)–PEG triblock copolymer (molecular weight = 13,000). The solubilities of the polymers as coating materials and these medicines as core substance were very low in CO2. However, the solubilities of these polymers in CO2 significantly increased with the addition of low molecular weight alcohols as cosolvents. After RESS‐N, polymeric microcapsules were formed according to the precipitation of the polymer caused by a decrease in the solvent power of CO2. This method offered three advantages: (1) enough of the coating polymers, which were insoluble in pure CO2, dissolved; (2) the microparticles of the medicine were encapsulated without adhesion between the particles because a nonsolvent was used as a cosolvent and the cosolvent remaining in the mixture was removed by the gasification of CO2; and (3) the polymer‐coating thickness was controlled with changes in the feed composition of the polymer for drug delivery. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 742–752, 2003  相似文献   
997.
    
In a compact closed two‐phase thermosyphon, the boiling area is adjacent to the condensation area, and the condensation area is provided with innerfins different from conventional thermosyphons. We clarified that the combination of condensation and self‐excited oscillation convection resulted in a good heat release. To intensify this self‐excited oscillation, we made the innerfin unsymmetrical, and consequently an improvement was realized. © 2000 Scripta Technica, Heat Trans Asian Res, 29(6): 523–534, 2000  相似文献   
998.
    
In a compact closed two-phase thermosyphon which consists of a multitube radiator and a refrigerant bath, it is observed that the heat radiation performance drops as the refrigerant bath becomes thin. We have found that this is due to vapor–liquid interaction and dryness in the upper side of the boiling area. We have also improved that heat radiation performance with a new refrigerant flow controller. ©1999 Scripta Technica, Heat Trans Asian Res, 28(8): 627–639, 1999  相似文献   
999.
The binding energy of Si 2 p electrons and the kinetic energy of the Si(KLL) X-ray-excited state were measured by using X-ray photoelectron spectroscopy (XPS) and X-ray Auger electron spectroscopy (XAES), respectively, for silicates with SiO4 tetrahedra of various polymerization types. The resulting Si 2 p XPS binding energies varied from 101.3 eV in merwinite (monomeric structure) to 103.4 eV in quartz and cristobalite (three-dimensional framework structure). A clear chemical-shift relation was observed, relating the polymerization structures of SiO4 tetrahedra to the plots of their Si 2 p XPS binding energy versus the kinetic energy of their Si(KLL) XAES spectra. Thus, the structural state of the surface silicates in various substances can be deduced from this chemical-shift relationship.  相似文献   
1000.
Ants attack and exclude natural enemies of aphids in ant–aphid mutualisms. However, larvae of the green lacewing, Mallada desjardinsi, prey on the cowpea aphid, Aphis craccivora, without exclusion by aphid-tending ants. Lacewing larvae are protected from ants by carrying aphid carcasses on their backs. Here, we tested whether cuticular hydrocarbons (CHCs) of aphid carcasses affected the aggressiveness of aphid-tending ants. Aphid carcasses were washed with n-hexane to remove lipids. Lacewing larvae with washed aphid carcasses were attacked by aphid-tending ants more frequently than those with untreated aphid carcasses. We measured the aggressiveness of aphid-tending ants to lacewing larvae that were either carrying a piece of cotton wool (a dummy aphid carcass) treated with CHCs from aphids or lacewing larvae, or carrying aphid carcasses. The rates of attack by ants on lacewing larvae carrying CHCs of aphids or aphid carcasses were lower than that of attack on lacewing larvae with conspecific CHCs. Chemical analysis by gas chromatography/mass spectrometry showed similarity of CHCs between aphids and aphid carcasses. These results suggest that aphid carcasses on the backs of lacewing larvae function via chemical camouflage to limit attacks by aphid-tending ants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号