首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   15篇
电工技术   36篇
化学工业   132篇
金属工艺   13篇
机械仪表   7篇
建筑科学   9篇
能源动力   6篇
轻工业   55篇
水利工程   1篇
无线电   38篇
一般工业技术   108篇
冶金工业   88篇
原子能技术   4篇
自动化技术   45篇
  2022年   4篇
  2021年   7篇
  2020年   2篇
  2019年   7篇
  2018年   6篇
  2017年   6篇
  2016年   12篇
  2015年   6篇
  2014年   7篇
  2013年   18篇
  2012年   20篇
  2011年   22篇
  2010年   24篇
  2009年   20篇
  2008年   25篇
  2007年   16篇
  2006年   9篇
  2005年   12篇
  2004年   20篇
  2003年   16篇
  2002年   14篇
  2001年   10篇
  2000年   15篇
  1999年   20篇
  1998年   28篇
  1997年   20篇
  1996年   20篇
  1995年   9篇
  1994年   12篇
  1993年   11篇
  1992年   8篇
  1991年   11篇
  1990年   4篇
  1989年   8篇
  1988年   9篇
  1987年   8篇
  1986年   7篇
  1985年   4篇
  1984年   10篇
  1983年   14篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1971年   1篇
排序方式: 共有542条查询结果,搜索用时 15 毫秒
531.
The dominant mechanics and mechanisms of fatigue crack propagation in ca. 500 nm thick free-standing copper films were evaluated at the submicron level using fatigue crack propagation experiments at three stress ratios, R = 0.1, 0.5 and 0.8. Fatigue cracking initiated at the notch root and propagated stably under cyclic loading. The fatigue crack propagation rate (da/dN) vs. stress intensity factor range (ΔK) relation was dependent on the stress ratio R;da/dN, increases with increasing R. Plots of da/dN vs. the maximum stress intensity factor (Kmax) exhibited coincident features in the high-Kmax region (Kmax ? 4.5 MPa m1/2) irrespective of R, indicating that Kmax is the dominant factor in fatigue crack propagation. In this region, the fatigue crack propagated in tensile fracture mode irrespective of the R value. The region ahead of the fatigue crack tip is plastically stretched by tensile deformation, causing necking deformation in the thickness direction and consequent chisel-point fracture. In contrast, in the low-Kmax region (Kmax < 4.5 MPa m1/2), the da/dN vs. Kmax function assumes higher values with decreasing R; in this region, the fracture mechanism depends on R. At the higher R value (R = 0.8), the fatigue crack propagates in the tensile fracture mode similar to that in the high-Kmax region. On the other hand, at the lower R values (R = 0.1 and 0.5), a characteristic mechanism of fatigue crack propagation appears: within several grains, intrusions/extrusions form ahead of the crack tip along the Σ3 twin boundaries, and the fatigue crack propagates preferentially through the intrusions/extrusions.  相似文献   
532.
Lately, it is required that the bandwidth of PWM (pulse width modulation) power amplifier is extended. For example, it is in application of the testing power supply of a low frequency immunity examination, or a class-D amplifier. In this paper, the authors show that the bandwidth of PWM power amplifier can be controller. This controller is implemented on a DSP (digital can be made wider with this controller. extended by using an approximate 2DOF (2-degree-of-freedom) digital signal processor). It is demonstrated from experiments that the bandwidth  相似文献   
533.
We have studied poly(methyl methacrylate)-grafted(PMMA) particle monolayer systems at the air-water interface. In previous papers, we reported that PMMA chains grafted from particles (silica particle and polystyrene latex) were extended on water surfaces. Through observing deposited particle monolayers on substrates using SEM, we have confirmed that PMMA of large molecular weights were either dispersed or arrayed in structure with long inter-particle distances approximately 500 nm. In contrast, low molecular weight PMMA were observed to aggregate upon deposition. We speculated that the difference in morphology in deposited particle monolayers would be attributed to the affinity between the grafted polymer and the substrate. To examine the effect of this affinity three new polymer-grafted silica particles were synthesized with a fairly high graft density of about 0.14 approximately 0.43 nm(-2). As well as PMMA-grafted silica particles (SiO2-PMMA), poly(2-hydroxyethyl methacrylate) and poly(t-butyl methacrylate)--grafted silica particles (SiO2-PHEMA and SiO2-PtBuMA) were also prepared and subjected to pi-A isotherm measurements and SEM observations. These pi-A isotherms indicated that polymer-grafted silica formed monolayer at the air-water interface, and the onset area of increasing surface pressure suggests that the polymer chains are extended on a water surface. However, the morphology of the deposited monolayer is highly dependent on polymer species: SiO2-PHEMA showed that the dispersed particle monolayer structure was independent of grafted molecular weight while SiO2-tBuMA showed an aggregated structure that was also independent of grafted moleculer weight. SiO2-PMMA showed intermediate tendencies: dispersed structure was observed with high grafted molecular weight and aggregated structure was observed with low grafted molecule weight. The morphology on glass substrate would be explaiened by hydrophilic interaction between grafted polymer and hydrophilic glass substrate.  相似文献   
534.
535.
Muscle energetics reflects the ability of myosin motors to convert chemical energy into mechanical energy. How this process takes place remains one of the most elusive questions in the field. Here, we combined experimental measurements of in vitro sliding velocity based on DNA-origami built filaments carrying myosins with different lever arm length and Monte Carlo simulations based on a model which accounts for three basic components: (i) the geometrical hindrance, (ii) the mechano-sensing mechanism, and (iii) the biased kinetics for stretched or compressed motors. The model simulations showed that the geometrical hindrance due to acto-myosin spatial mismatching and the preferential detachment of compressed motors are synergic in generating the rapid increase in the ATP-ase rate from isometric to moderate velocities of contraction, thus acting as an energy-conservation strategy in muscle contraction. The velocity measurements on a DNA-origami filament that preserves the motors’ distribution showed that geometrical hindrance and biased detachment generate a non-zero sliding velocity even without rotation of the myosin lever-arm, which is widely recognized as the basic event in muscle contraction. Because biased detachment is a mechanism for the rectification of thermal fluctuations, in the Brownian-ratchet framework, we predict that it requires a non-negligible amount of energy to preserve the second law of thermodynamics. Taken together, our theoretical and experimental results elucidate less considered components in the chemo-mechanical energy transduction in muscle.  相似文献   
536.
ABSTRACT: The Nano Spray Dryer B-90 offers a new, simple and alternative approach for the production of drug nanocrystals. Among attractive drugs, calpain inhibitor that inhibits programmed cell death "apoptosis" is candidate for curing apoptosis-mediated intractable disease such as Alzheimer's and Parkinson's disease. In this study, the preparation of calpain inhibitor nanocrystals by Nano Spray Dryer B-90 was demonstrated. The particle sizes were controlled by means of selecting mesh aperture sizes. The obtained average particle sizes were in the ranges of around 300 nm to submicron meter.  相似文献   
537.
Cu-based spinel-oxides CuB2O4 (B = Fe, Mn, Cr, Ga, Al, or Fe0.75Mn0.25) were synthesized via a sol–gel method and subsequent solid-state reaction. The spinels mechanically mixed with γ-Al2O3 were evaluated for production of hydrogen from dimethyl ether steam reforming (DME SR). The reduction behavior and crystal property of these spinel-oxides, and the Cu oxidation state in spinel catalysts were investigated by temperature-programmed reduction, X-ray diffraction, and X-ray photoelectron spectroscopy techniques. The reduced phases of the Cu-based spinel catalysts that strongly affected the catalytic activity and durability were composed of metallic copper with metal oxides (MnO (B = Mn), Cr2O3 (B = Cr), and Al2O3 (B = Al)) or with spinels (CuGa2O4 (B = Ga), Fe3O4 (B = Fe), and MnFe2O4 (B = Fe0.75Mn0.25). The stability of B metal oxides and the interaction between copper species and B metal oxides significantly contributed to the reforming performance.  相似文献   
538.
日本静冈静冈市/Shizuoka,Shizuoka,Japan  相似文献   
539.
Protamine has been used as an antiheparin drug and a natural preservative in various food products. However, limited studies have evaluated the physicochemical and functional properties of protamine. Hence, we assessed the mechanisms underlying the inhibition of lipid absorption following salmon protamine intake in in vitro and in vivo studies. In initial experiments, a salmon protamine hydrolyzate (PH) was prepared using in vitro simulated gastrointestinal digestion suppressed pancreatic lipase activity and micellar cholesterol solubility. This PH had higher bile acid‐binding capacity and emulsion breakdown activity than casein hydrolyzate and l ‐arginine. However, the hypolipidemic functions of protamine were dramatically reduced by pancreatin digestion. In further experiments, groups of male Wistar rats were fed an AIN‐93G diet containing 5% (wt/wt) salmon protamine or a protamine amino acid mixture. After 4 wk of feeding with experimental diets, reductions in serum and liver triacylglycerol (TAG) and cholesterol contents were observed in the presence of protamine, reflecting inhibition of TAG, cholesterol, and bile acid absorption. These data suggest that the formation of insoluble PH–bile acid complexes is critical before the bile acid‐binding capacity is reduced. Therefore, dietary salmon protamine may ameliorate lifestyle‐related diseases such as hyperlipidemia and obesity.  相似文献   
540.
In order to improve the interlaminar mechanical properties of CFRP laminates, hybrid CFRP/VGCF laminates have been fabricated by using a newly-developed method, i.e., powder method, where the powder of vapor grown carbon fiber (VGCF) is added at the mid-plane of [0°/0°]14 CFRP laminates. Experimental results of double cantilever beam (DCB) tests indicate the improvement on the interlaminar mechanical properties of Mode-I fracture behavior with much higher critical load PC and fracture toughness GIC with VGCF interlayer. Crack propagation and fracture surface have also been observed to interpret this improvement mechanism. Moreover, based on experimental GIC, numerical simulations using finite element method (FEM) with cohesive elements have been carried out to analyze the delamination propagation. The interlaminar tensile strength of hybrid CFRP/VGCF laminates, which is obtained by matching the numerical load–COD (crack opening displacement) curves to experimental ones, is higher than that of base CFRP laminates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号