首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   2篇
  国内免费   1篇
电工技术   2篇
化学工业   38篇
金属工艺   2篇
机械仪表   12篇
矿业工程   1篇
轻工业   3篇
水利工程   2篇
石油天然气   15篇
无线电   20篇
一般工业技术   36篇
冶金工业   44篇
原子能技术   8篇
自动化技术   24篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   9篇
  2013年   5篇
  2012年   4篇
  2011年   11篇
  2010年   8篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   9篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1987年   3篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   6篇
  1977年   3篇
  1976年   7篇
  1975年   3篇
  1974年   5篇
  1973年   4篇
  1971年   2篇
  1970年   3篇
  1969年   4篇
  1968年   3篇
  1967年   7篇
  1963年   1篇
  1961年   1篇
排序方式: 共有207条查询结果,搜索用时 0 毫秒
11.
We present a sensitivity analysis-based method for explaining prediction models that can be applied to any type of classification or regression model. Its advantage over existing general methods is that all subsets of input features are perturbed, so interactions and redundancies between features are taken into account. Furthermore, when explaining an additive model, the method is equivalent to commonly used additive model-specific methods. We illustrate the method’s usefulness with examples from artificial and real-world data sets and an empirical analysis of running times. Results from a controlled experiment with 122 participants suggest that the method’s explanations improved the participants’ understanding of the model.  相似文献   
12.
Current inductive machine learning algorithms typically use greedy search with limited lookahead. This prevents them to detect significant conditional dependencies between the attributes that describe training objects. Instead of myopic impurity functions and lookahead, we propose to use RELIEFF, an extension of RELIEF developed by Kira and Rendell [10, 11], for heuristic guidance of inductive learning algorithms. We have reimplemented Assistant, a system for top down induction of decision trees, using RELIEFF as an estimator of attributes at each selection step. The algorithm is tested on several artificial and several real world problems and the results are compared with some other well known machine learning algorithms. Excellent results on artificial data sets and two real world problems show the advantage of the presented approach to inductive learning.  相似文献   
13.
We study and illustrate the techniques of modeling conflict situations when the capabilities of each side may depend on the actions of the partners. We consider conflicts where violating the constraints is physically impossible.  相似文献   
14.
Theoretical and Empirical Analysis of ReliefF and RReliefF   总被引:23,自引:0,他引:23  
Relief algorithms are general and successful attribute estimators. They are able to detect conditional dependencies between attributes and provide a unified view on the attribute estimation in regression and classification. In addition, their quality estimates have a natural interpretation. While they have commonly been viewed as feature subset selection methods that are applied in prepossessing step before a model is learned, they have actually been used successfully in a variety of settings, e.g., to select splits or to guide constructive induction in the building phase of decision or regression tree learning, as the attribute weighting method and also in the inductive logic programming.A broad spectrum of successful uses calls for especially careful investigation of various features Relief algorithms have. In this paper we theoretically and empirically investigate and discuss how and why they work, their theoretical and practical properties, their parameters, what kind of dependencies they detect, how do they scale up to large number of examples and features, how to sample data for them, how robust are they regarding the noise, how irrelevant and redundant attributes influence their output and how different metrics influences them.  相似文献   
15.
In this paper, we describe the first practical application of two methods, which bridge the gap between the non-expert user and machine learning models. The first is a method for explaining classifiers’ predictions, which provides the user with additional information about the decision-making process of a classifier. The second is a reliability estimation methodology for regression predictions, which helps the users to decide to what extent to trust a particular prediction. Both methods are successfully applied to a novel breast cancer recurrence prediction data set and the results are evaluated by expert oncologists.  相似文献   
16.
17.
Information-Based Evaluation Criterion for Classifier's Performance   总被引:2,自引:0,他引:2  
Kononenko  Igor  Bratko  Ivan 《Machine Learning》1991,6(1):67-80
In the past few years many systems for learning decision rules from examples were developed. As different systems allow different types of answers when classifying new instances, it is difficult to appropriately evaluate the systems' classification power in comparison with other classification systems or in comparison with human experts. Classification accuracy is usually used as a measure of classification performance. This measure is, however, known to have several defects. A fair evaluation criterion should exclude the influence of the class probabilities which may enable a completely uninformed classifier to trivially achieve high classification accuracy. In this paper a method for evaluating the information score of a classifier's answers is proposed. It excludes the influence of prior probabilities, deals with various types of imperfect or probabilistic answers and can be used also for comparing the performance in different domains.  相似文献   
18.
Refractories and Industrial Ceramics - An analysis was carried out of certain aspects of the zone-forming process in the roof brick of open-hearth furnaces. It was established that three fissure...  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号