首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   4篇
化学工业   27篇
金属工艺   5篇
机械仪表   2篇
建筑科学   2篇
能源动力   5篇
轻工业   3篇
石油天然气   1篇
无线电   5篇
一般工业技术   33篇
冶金工业   5篇
自动化技术   24篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   7篇
  2012年   9篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1975年   3篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
81.
The 204- and 229-nm excited UV resonance Raman spectra of wastewater solutions containing sodium nitrite and nitrate were measured in the concentration range 7 microM to 3.5 mM (0.1-50 ppm nitrogen). The other chemical species present in wastewater do not interfere with Raman measurements of NO2-/NO3- bands. We observe detection limits of < 14 microM (< 200 ppb) for both NO2- and NO3-. UV resonance Raman spectroscopy appears to be an excellent tool for on-line monitoring of NO2-/NO3- in wastewater for the real-time control of water treatment plants.  相似文献   
82.
Conclusions A series of machines has been developed for the manufacture of viscose textile yarn, viscose technical yarn, polyacrylonitrile fibre, and so on.The new units of these machines for spinning yarns from solutions are spinning units with a U-shaped tube, cascade washing, a spindle with tension regulation by use of annular permanent magnets, mirror adjustment of yarns in adjacent sections, and a take-up and winding mechanism with a mobile bobbin.Thanks to the application of these units, an increase in machine productivity has been assured, plus an improvement in the physico-mechanical indices of the product produced.Translated from Khimicheskie Volokna, No. 3, pp. 8–11, May–June, 1989.  相似文献   
83.
We describe a state-of-the-art tunable ultraviolet (UV) Raman spectrometer for the 193-270 nm spectral region. This instrument allows for steady-state and transient UV Raman measurements. We utilize a 5 kHz Ti-sapphire continuously tunable laser (approximately 20 ns pulse width) between 193 nm and 240 nm for steady-state measurements. For transient Raman measurements we utilize one Coherent Infinity YAG laser to generate nanosecond infrared (IR) pump laser pulses to generate a temperature jump (T-jump) and a second Coherent Infinity YAG laser that is frequency tripled and Raman shifted into the deep UV (204 nm) for transient UV Raman excitation. Numerous other UV excitation frequencies can be utilized for selective excitation of chromophoric groups for transient Raman measurements. We constructed a subtractive dispersion double monochromator to minimize stray light. We utilize a new charge-coupled device (CCD) camera that responds efficiently to UV light, as opposed to the previous CCD and photodiode detectors, which required intensifiers for detecting UV light. For the T-jump measurements we use a second camera to simultaneously acquire the Raman spectra of the water stretching bands (2500-4000 cm(-1)) whose band-shape and frequency report the sample temperature.  相似文献   
84.
Petridou A  Mougios V  Sagredos A 《Lipids》2003,38(8):805-811
Animal studies have suggested that CLA, a natural component of meat and dairy products, may confer beneficial effects on health. However, human studies using supplementation with CLA have produced contradictory results. The aim of the present study was to further investigate the effect of CLA supplementation on human body fat, serum leptin, and serum lipids, as well as the incorporation of CLA isomers into serum lipids classes. Sixteen young healthy nonobese sedentary women received 2.1 g of CLA (divided equally between the cis,trans-9,11 and trans,cis-10,12 isomers) daily for 45 d and placebo for 45 d in a randomized double-blind crossover design. Body fat was estimated (by measurement of skinfold thickness at 10 sites), and blood was sampled at the beginning, middle, and end of the entire intervention period; an additional blood sample was obtained 2 wk thereafer. No significant differences in energy, carbohydrate, lipid, or protein intake existed between the CLA and placebo intake periods. No significant differences were found in body fat or serum leptin, TAG, total cholesterol, HDL-cholesterol, and alanine aminotransferase between CLA and placebo. The CLA isomer content of serum TAG, phospholipids, and total lipids increased 2–5 times with CLA supplementation (P<0.05). In contrast, the CLA content of cholesteryl esters did not change significantly. The period of 2 wk after the end of CLA supplementation was sufficient for its washout from serum lipids. These data indicate that supplementation with 2.1 g of CLA daily for 45 d increased its levels in blood but had no effect on body composition or the lipidemic profile of nonobese women.  相似文献   
85.
The main inorganic material forming the skeletal elements in Demospongiae as well as in Hexactinellida, the spicules, is amorphous silica. The spicules occur in the cytoplasm and the extracellular space and also in the nucleus (as silicate crystals) of some sponge cells; the function in the latter compartment is unknown. Recent evidence shows that the formation of spicules is mediated by the enzyme silicatein. The cDNA as well as the gene encoding this enzyme was cloned from Suberites domuncula. The recombinant silicatein catalyzes the synthesis of amorphous silicate using tetraethoxysilane as substrate. The enzyme is dependent on ferric iron. Silicatein also has proteolytic (cathepsin-like) activity. Incubation of primmorphs, a special form of 3D-cell aggregates, with silicon resulted in a strong increase of their size from 1-7 mm to approximately 10 mm. The morphogenetic activity of silicate is underscored by the finding that this ion increases gene expression of silicatein and collagen. Based on these findings, it is concluded that both iron and silicate stimulate the activity of silicatein. Furthermore, it is proposed that the growing spicules are surrounded by the scavenger receptor which might be considered as a docking molecule for the collagen matrix into which the spicules are embedded.  相似文献   
86.
New polymers with photo‐controllable anchoring energy and tunable pretilt angle within 90°–0° range for nematic liquid crystals alignment were developed. The functional properties of polymers are provided by the effect of photoinduced planar alignment and the presence of side hydrocarbon chains in macromolecules that create a homeotropic alignment effect. Applying photosensitive alignment layers based on polymers with side benzaldehyde and hydrocarbon groups, fabrication of optical devices with refractive index gradient, uniform cell gap, and low operation voltage is possible. The developed materials are suitable for simple fabrication of tunable liquid crystal lenses.  相似文献   
87.
Currently several institutes worldwide are working on the development of a new generation of ultracold neutron (UCN) sources. In parallel with source development, new materials for guiding and storage of UCN are developed. Currently the best results have been achieved using 58Ni, Be, solid O2 and low temperature Fomblin oil (LTF). All of these materials have their shortcomings like cost, toxicity or difficulty of use. A novel very promising material is diamond like carbon (DLC). Several techniques exist to coat surfaces, and industrial applications (e.g., for extremely hard surfaces) are already wide spread. Preliminary investigations using neutron reflectometry at PSI and Los Alamos yielded a critical velocity for DLC of about 7 m/s thus comparable to Beryllium. A low upper limit of depolarization probability for stored polarized UCN has been measured at the PF2 facility of the Institut Laue-Langevin (ILL) by North Carolina State University (NCSU), Los Alamos National Laboratory (LANL), and Petersburg Nuclear Physics Institute (PNPI), thus making it also a good material for storage and guidance of polarized UCN. Still missing is the loss probability per bounce. We will be able to extract this number and a more stringent value for the depolarization from our experiment thus proving the suitability of DLC as a wall material for a wide range of UCN applications.  相似文献   
88.
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. Although a complete and correct resolution-style calculus has already been suggested for this specific fragment, this calculus involves constructions too complex to be of practical value. In this paper, we develop a machine-oriented clausal resolution method which features radically simplified proof search. We first define a normal form for monodic formulae and then introduce a novel resolution calculus that can be applied to formulae in this normal form. By careful encoding, parts of the calculus can be implemented using classical first-order resolution and can, thus, be efficiently implemented. We prove correctness and completeness results for the calculus and illustrate it on a comprehensive example. An implementation of the method is briefly discussed.  相似文献   
89.
Vertically aligned carbon nanofiber (VACNF) electrode arrays were tested for their potential application in recording neuro-electrophysiological activity. We report, for the first time, stimulation and extracellular recording of spontaneous and evoked neuroelectrical activity in organotypic hippocampal slice cultures with ultramicroelectrode VACNF arrays. Because the electrodes are carbon-based, these arrays have potential advantages over metal electrodes and could enable a variety of future applications as precise, informative, and biocompatible neural interfaces.  相似文献   
90.
Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers from NGC2007. The NGC2007 meeting, which included two days of tutorials (Spring School) and a three day symposium, attracted approximately 400 participants from academic, industrial and governmental research institutions from 41 countries, and covered recent developments in the fabrication and functionality of nano-scale materials, devices and system architecture from advanced CMOS to molecular electronics, photonics, optoelectronics and magnetic materials and devices. The success of the conference would not have been possible without generous support from many sponsors and research institutions, especially from Arizona State University (conference host and co-organizer), International Science and Technology Center (ISTC), National Science Foundation (NSFT), Defense Advanced Research Agency (DARPA), Office of Naval Research, Army Research Office, Computational Chemistry List (CCL), Springer Publisher, City of Tempe, STMicroelectronics, Quarles & Brady LLP, Oak Ridge National Laboratory, Canadian Consulate in Phoenix, Salt River Project (SRP) and many other local, national and international and individual supporters. We would like to acknowledge the shared responsibility for this special issue of Nanotechnology on molecular and bioelectronics, and the highly professional support from Dr Nina Couzin, Dr Alex Wotherspoon and the Nanotechnology team from the IOP Publishing. We also acknowledge the exception made in allowing the publication of some material that is outside the normal scope of Nanotechnology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号